Asymptoten bestimmen

Es gibt waagerechte, senkrechte und schiefe Asymptoten .

Waagerechte Asymptoten treten auf, wenn ein Grenzwert im Unendlichen einen konkreten Zahlenwert liefert.

Senkrechte Asymptoten treten auf, wenn der Grenzwert an Definitionslücken keinen konkreten Zahlenwert, sondern %%\pm\infty%% liefert.

Schiefe Asymptoten treten manchmal bei Bruchtermen auf.

Waagerechte Asymptoten

Die Grenzwerte im Unendlichen sind %%\infty%% Deshalb gibt es keine waagerechten Asymptoten.

Senkrechte Asymptoten

Die Grenzwerte an den Definitionslücken sind %%-4 ln(4)%% und %%0%%. Deshalb gibt es keine senkrechten Asymptoten.

Schiefe Asymptoten

Schiefe Asymptoten können nur bei gebrochen-rationalen Funktionen vorkommen (also ohne den Logarithmus). Deshalb gibt es keine schiefen Asymptoten.