Berechne jeweils die Länge der Vektoren %%\vec v%% und %%\vec w%%!

Betrag eines Vektors

geg.: %%\vec v = \begin{pmatrix}1\\\sqrt{3}\end{pmatrix}%%

ges.: %%|\vec v|%%

Um die Länge (d. h. den Betrag) eines Vektors zu berechnen, bilde die Summe der Quadrate der Koordinaten und ziehe anschließend die Wurzel!

$$|\vec v| = \left|\pmatrix{1\\\sqrt{3}}\right| = \sqrt{1^2+\sqrt{3}^2} =$$ $$= \sqrt{1+3} = \sqrt{4} = 2$$

Verfahre beim Vektor %%\vec w%% genauso!

$$|\vec w| = \left|\pmatrix{2\\0}\right| = \sqrt{2^2+0^2} =$$ $$= \sqrt{4+0} = \sqrt{4} = 2$$