%%\left(\frac{x^3y^{-4}}{y^{-5}y^2}\right)^{-2}%%

Potenzgesetze

Artikel zum Thema

%%\left(\frac{x^3y^{-4}}{y^{-5}y^2}\right)^{-2}%%

Potenzgesetz anwenden . Das Minus im Exponent in Plus setzen, indem der Bruch in einen Kehrbruch umgewandelt wird. %%x^{-2}=\frac1{x^2}%%

%%=\left(\frac{y^{-5}y^2}{x^3y^{-4}}\right)^2%%

Potenzgesetz anwenden . Beim Multiplizieren die beiden Exponenten addieren .

%%=\left(\frac{y^{-5+2}}{x^3y^{-4}}\right)^2%%

%%=\left(\frac{y^{-3}}{x^3y^{-4}}\right)^2%%

Kürzen mit %%y^{-3}%%

%%=\left(\frac1{x^3y^{-1}}\right)^2%%

Potenzgesetz anwenden. Das Minus im Exponent von y in Plus setzen, indem der Bruch in einen Kehrbruch umgewandelt wird.

%%=\left(\frac y{x^3}\right)^2%%

 

%%=\frac{y^2}{x^6}%%