%%f(x)= x^2-81%%

Nullstellenbestimmung

Die Nullstellen einer Funktion %%f%% sind die %%x%%-Werte, für die %%f(x)=0%% wird.

Mitternachtsformel

Um diese Gleichung lösen zu können, brauchst du Wissen über die Mitternachtsformel.

Bestimme die Nullstellen:

%%f(x)=x²-81%%

Setze die Gleichung in die Mitternachtsformel ein.

%%x_1,_2=\dfrac{-0\pm\sqrt{0^2-4\cdot1\cdot(-81)}}{2\cdot1}%%

Löse den Inhalt der Diskriminante.

%%x_1,_2=\dfrac{-0\pm\sqrt{324}}{2}%%

%%x_1=\frac{+18}{2}=9%%

%%x_2=\frac{-18}{2}=-9%%

Fall 1:+

Fall 2:-

Ergebnis:

Die Funktion hat die beiden Nullstellen %%x_1=9%% und %%x_2=-9%%.