Springe zum Inhalt oder Footer
SerloDie freie Lernplattform

Kurse

Überblick zur Menge der ganzen Zahlen

1Grundlagen zur Menge der ganzen Zahlen

a) Negative Zahlen sind dir bereits aus dem Alltag bekannt, etwa aus folgenden Situationen:

  • Temperatur, z.B. 5°-5° Celsius

  • Anzeige im Aufzug, z.B. Etage -1 (1. Untergeschoss)

  • Höhen von Orten, z.B. totes Meer -5m ü.NN. (Normalnull)

b) Die Vereinigung der negativen Zahlen Z\mathbb{Z}^- mit den nichtnegativen Zahlen N0\mathbb{N}_0 ergibt die Menge der ganzen Zahlen Z\mathbb{Z}:

Image Title

c) Die Menge Z\mathbb{Z} der ganzen Zahlen lässt sich auch gut am Zahlenstrahl veranschaulichen. Dabei stehen die negativen Zahlen links von der 00 und die positiven rechts davon.

Image Title

Der Abstand einer ganzen Zahl von der 0 wird als ihr Betrag bezeichnet. Damit ist der Betrag einer positiven Zahl die Zahl selbst. Beispiel: Der Betrag von 5-5 ist 55, in Zeichen: 5=5\left|-5\right|=5.

Zu einer Zahl heißt die Zahl auf der anderen Seite der 00 mit gleichem Betrag Gegenzahl.Beispiel: Die Gegenzahl zu 5-5 ist 55.

d) Nun wollen wir uns mit der Addition ganzer Zahlen beschäftigen. Dabei wollen wir die Addition einer positiven Zahl durch einen nach rechts zeigenden Pfeil veranschaulichen. Wird eine negative Zahl addiert, so nutzen wir einen nach links zeigenden Pfeil.

Beispiel: 3+2=53+2=5

Image Title

Beispiel: 3+(2)=13+(-2)=1

Image Title

e) Bei der Subtraktion ganzer Zahlen sehen wir den Bezug zur Addition. Hier stellen wir die Subtraktion einer negativen Zahl, die der Addition der Gegenzahl entspricht, mit einem nach rechts zeigenden Pfeil dar.

Beispiel: 3(2)=53-(-2)=5

Image Title

Beispiel: 32=13-2=1

Image Title

Dieses Werk steht unter der freien Lizenz
CC BY-SA 4.0Was bedeutet das?