🎓 Ui, schon Prüfungszeit? Hier geht's zur Mathe-Prüfungsvorbereitung.
Springe zum Inhalt oder Footer
SerloDie freie Lernplattform

12. Lineare Gleichungssysteme

Wir wollen lineare Gleichungen in mehreren Unbekannten x1,,xn lösen.

Eine (die i-te) Gleichung hat folgendes Aussehen

ai,1x1+ai,2x2++ai,nxn=bi

mit Koeffizienten ai,1,ai,2,,ai,n,bi.

Einfaches Beispiel für n=2

2x1x2=2

Beschreibt eine Gerade in der (x1,x2)-Ebene durch die Punkte (1|0) und (0|2).

Lösbarkeit von LGS

Um eine eindeutige Lösung zu erhalten, muss man auf jeden Fall n Gleichungen für n Unbekannte stellen. (Dadurch ist die eindeutige Lösbarkeit aber leider noch nicht garantiert!)

2x1x2=2x1+32x2=2

Graphisch suchen wir den Schnittpunkt zweier Geraden:

Schnittpunkt zweier Geraden

Recht einfach lässt sich das folgende LGS lösen

2x1x2=232x2=2

Wir können sofort x2=43 ablesen und das in die erste Gleichung einsetzen

2x143=2

was x1=13 gibt.

Gauß'sches Eliminationsverfahren

Schön wäre es natürlich, wenn alle unsere LGS in einer solchen Dreiecksform vorliegen würden. Glücklicherweise können wir ein allgemeines LGS leicht in eine solche Form bringen. Diesen Zustand des zweiten Systems können wir aus dem ersten System leicht herstellen, indem wir die erste Gleichung mit 12 multiplizieren und das von der zweiten Gleichung abziehen - wir eliminieren mittels der ersten Gleichung x1 aus der zweiten Gleichung.

Wir wollen ein LGS äquivalent umformen (ohne Änderung der Lösungsmenge) durch folgende Strategie:

  • Mittels der ersten Zeile x1 aus Zeilen 2n eliminieren

  • Mittels der zweiten Zeile x2 aus Zeilen 3n eliminieren

  • Mittels der n1-ten Zeile xn1 aus Zeile n eliminieren

  • Aus dem so entstandenen gestaffelten Dreieckssystem kann man nacheinander xn, xn1,… x2 und x1 ausrechnen.

Eine Komplikation kann auftreten: wenn im Schritt "xi eliminieren" der (derzeitige) Koeffizient ai,i Null ist, gelingt die Elimination nicht.

In diesem Fall Zeile i mit einer darunter liegenden Zeile vertauschen, bei der in Spalte i keine Null steht (gibt es keine solche Zeile, gibt es keine eindeutige Lösung des LGS).

Um Schreibarbeit zu sparen und zur Implementierung auf dem Computer, lässt man die xi und das = weg. Speichere nur Koeffizienten ai,j und bi.

Beispiel

Bei dem linearen Gleichungssystem

x1x2=2x1+x2+x3=12x1x3=3

sieht der Algorithmus so aus:

(110111201|213)(110001201|233)

(110001021|231)(110021001|213)

Wer an dieser Stelle Probleme hat, die Lösung abzulesen, kann sich das einfach wieder als Gleichungssystem hinschreiben:

x1x2=2+2x2x3=1+x3=3

gibt x3=3, x2=(1+3)/2=1 und x1=2+1=3.

Laden

Laden

Laden


Dieses Werk steht unter der freien Lizenz
CC BY-SA 4.0Was bedeutet das?