Springe zum Inhalt oder Footer
SerloDie freie Lernplattform

Aufgaben mit drei Unbekannten

Hier findest du Übungsaufgaben zu Gleichungen mit drei Unbekannten. Lerne, lineare Gleichungssysteme mit drei Gleichungen und drei Variablen zu lösen!

  1. 1

    Gegeben sei eine allgemeine quadratische Funktion f(x)=ax2+bx+cf(x) = ax^2 + bx + c. Die Punkte R(12)\mathrm{R}(1|2), Q(13)\mathrm{Q}(-1|3) und S(01)\mathrm{S}(0|1) liegen auf dem Graphen der Funktion ff.

    Du möchtest nun mithilfe dieser Informationen auf die Parameter aa, bb und cc schließen.

    1. Stelle ein lineares Gleichungssystem mit den Unbekannten aa, bb und cc auf.

    2. Löse das Gleichungssystem.

    3. Gib die Funktionsgleichung an.

  2. 2

    Bestimme - falls möglich - die Lösungsmenge der folgenden Gleichungssysteme.

    1. I4u+3vw=2II3u4v+5w=5III2u+2v+w=6\def\arraystretch{1.25} \begin{array}{rcccccc}\mathrm{I}&4 u&+&3 v&-& w&=&2\\\mathrm{II}&-3 u&-&4 v&+&5 w&=&-5\\\mathrm{III}&-2 u&+&2 v&+& w&=&6\end{array}

    2. I2x+10y5z=1II10x30y+3z=1III4x+15y2z=1\def\arraystretch{1.25} \begin{array}{rcccccc}\mathrm{I}&2 x&+&10 y&-&5 z&=&-1\\\mathrm{II}&10 x&-&30 y&+&3 z&=&-1\\\mathrm{III}&-4 x&+&15 y&-&2 z&=&1\end{array}


Dieses Werk steht unter der freien Lizenz
CC BY-SA 4.0Was bedeutet das?