Berechne die Nullstellen folgender Funktionen mithilfe der Polynomdivision.
f(x)=x3−x2−4x+4
Für diese Aufgabe benötigst Du folgendes Grundwissen: Nullstellenbestimmung
Die Nullstellen einer Funktion f sind die x-Werte, für die f(x)=0 wird.
f(x)=x3−x2−4x+4
Versuche eine Nullstelle durch systematisches Probieren herauszufinden. Setze z.B. 1 in f(x) ein.
f(1)=13−12−4⋅1+4=0
Die Funktion f(x) hat an der Stelle x1=1 eine Nullstelle. Da f(1)=0, wissen wir, dass f(x) den dazugehörigen Linearfaktor (x−1) besitzt.
Führe nun die Polynomdivision f(x):(x−1) durch.
(x3−x2−4x+4):(x−1)=x2−4−(x3−x2)0−4x+4−(−4x+4)0
Die Funktion f(x) wird dann 0, sobald mindestens einer der Faktoren gleich 0 ist. Da die Nullstelle x1=1 bereits bekannt ist, kannst du die weiteren Nullstellen von f bestimmen, indem du das erhaltene Polynom gleich 0 setzt.
x2−4 = 0 +4 x2 = 4 ↓ x2,3 = ±4 = ±2 Die Funktion f(x) hat drei Nullstellen bei x1=1, x2=2 und x3=−2.
Hast du eine Frage oder Feedback?
g(x)=x3+3x2−16x+12
Für diese Aufgabe benötigst Du folgendes Grundwissen: Nullstellenbestimmung
Die Nullstellen einer Funktion f sind die x-Werte, für die f(x)=0 wird.
g(x)=x3+3x2−16x+12
Versuche eine Nullstelle durch systematisches Probieren herauszufinden. Setze z.B. 1 in g(x) ein.
g(1)=13+3⋅12−16⋅1+12=0
Die Funktion g(x) hat an der Stelle x1=1 eine Nullstelle. Da g(1)=0, wissen wir, dass g(x) den dazugehörigen Linearfaktor (x−1) besitzt.
Führe nun die Polynomdivision g(x):(x−1) durch.
−(x3+3x2−16x+12):(x−1)=x2+4x−12−(x3−x2)4x2−16x−(4x2−4x)−12x+12−(−12x+12)0
Die Funktion g(x) wird dann 0, sobald mindestens einer der Faktoren gleich 0 ist. Da die Nullstelle x1=1 bereits bekannt ist, kannst du die weiteren Nullstellen von g bestimmen, indem du das erhaltene Polynom gleich 0 setzt.
x2+4x−12 = 0 ↓ Mitternachtsformel anwenden.
x2,3 = 2⋅1−4±42−4⋅1⋅(−12) ↓ Unter der Wurzel zusammenfassen.
x2,3 = 2−4±64 = 2−4±8 x2=24=2
x3=2−12=−6
Fall 1: +
Fall 2: −
Die Funktion g(x) hat drei Nullstellen bei x1=1, x2=2 und x3=−6.
Hast du eine Frage oder Feedback?
h(x)=3x4+12x3−33x2−90x
Für diese Aufgabe benötigst Du folgendes Grundwissen: Nullstellenbestimmung
Die Nullstellen einer Funktion f sind die x-Werte, für die f(x)=0 wird.
h(x) = 3x4+12x3−33x2−90x ↓ 3x ausklammern.
h(x) = 3x⋅(x3+4x2−11x−30) ⇒x1=0
Die Funktion h(x) wird dann 0, sobald mindestens einer der Faktoren gleich 0 ist. Da die Nullstelle x1=0 bereits bekannt ist, kannst du die weiteren Nullstellen von h bestimmen, indem du die Klammer gleich 0 setzt.
x3+4x2−11x−30=0
Versuche eine Nullstelle durch systematisches Probieren herauszufinden. Setze z.B. −2 für x ein.
(−2)3+4⋅(−2)2−11⋅(−2)−30=−8+16+22−30=0
Die Funktion h(x) hat an der Stelle x2=−2 eine Nullstelle. Da h(−2)=0, wissen wir, dass h(x) den dazugehörigen Linearfaktor (x+2) besitzt.
Führe nun die Polynomdivision (x3+4x2−11x−30):(x+2) durch.
− (x3+4x2−11x−30):(x+2)=x2+2x−15−(x3+2x2)−(x3−12x2−11x(x3+−(2x2+4x)−(x3+3x2−−15x−30(x3+3x2−(−15x−30)−(x3+3x2−4x−120
Setze das erhaltene Polynom gleich 0.
x2+2x−15 = 0 ↓ Mitternachtsformel anwenden.
x3,4 = 2⋅1−2±22−4⋅1⋅(−15) ↓ Unter der Wurzel zusammenfassen.
x3,4 = 2−2±64 x3,4 = 2−2±8 Fall 1: +
x3=26=3
Fall 2: −
x4=2−10=−5
Die Funktion h(x) hat vier Nullstellen bei x1=0, x2=−2, x3=3 und x4=−5.
Hast du eine Frage oder Feedback?
i(x)=x3−7x−6
Für diese Aufgabe benötigst Du folgendes Grundwissen: Nullstellenbestimmung
Die Nullstellen einer Funktion f sind die x-Werte, für die f(x)=0 wird.
i(x) = x3−7x−6 ↓ Versuche eine Nullstelle durch systematisches Probieren herauszufinden. Setze z.B. 1 in i(x) ein.
i(1) = 13−7⋅1−6 i(1) = −12 i(1)=0
Setze z.B. −1 in i(x) ein.
i(−1)=(−1)3−7⋅(−1)−6=0
Die Funktion i(x) hat an der Stelle x1=−1 eine Nullstelle. Da i(−1)=0, wissen wir, dass i(x) den dazugehörigen Linearfaktor (x+1) besitzt.
Führe nun die Polynomdivision i(x):(x+1) durch.
−(x3+0x2−7x−6):(x+1)=x2−x−6−(x3+x2)−x2−7x−(−x2−x)−6x−6−(−6x−6)0
Die Funktion i(x) wird dann 0, sobald mindestens einer der Faktoren gleich 0 ist. Da die Nullstelle x1=−1 bereits bekannt ist, kannst du die weiteren Nullstellen von i bestimmen, indem du das erhaltene Polynom gleich 0 setzt.
x2−x−6 = 0 ↓ Mitternachtsformel anwenden.
x2,3 = 2⋅11±(−1)2−4⋅1⋅(−6) ↓ Unter der Wurzel zusammenfassen.
x2,3 = 21±25 x2,3 = 21±5 x2=26=3
x3=2−4=−2
Fall 1: +
Fall 2: −
Die Funktion i(x) hat drei Nullstellen bei x1=−1, x2=3 und x3=−2.
Hast du eine Frage oder Feedback?