6,71 | = | sin(φ+31,43∘)9⋅sinφ | |
96,71 | = | sin(φ+31,43∘)sinφ | |
| ↓ | mit Additionstheorem für Sinus: sin(α+β)=sinα⋅cosβ+⋅sinβ⋅cosα |
0,746 | = | sinφ⋅cos(31,43)+sin(31,43)⋅cosφsinφ | |
0,746 | = | sinφ⋅0,85+0,52⋅cosφsinφ | ⋅sin(φ)⋅0,853+0,521⋅cos(φ) |
sin(φ) | = | 0,746⋅[(sin(φ)⋅0,853+0,521⋅cos(φ)] | |
sin(φ) | = | 0,636⋅sin(φ)+0,389⋅cos(φ) | :sin(φ) |
1 | = | sin(φ)0,636⋅sin(φ)+sin(φ)0,389⋅cos(φ) | |
| ↓ | sin(φ) im ersten Bruch kürzen |
1 | = | 0,636+0,389⋅sin(φ)cos(φ) | |
| ↓ | ersetze cos(φ)sin(φ)=tan(φ) |
1 | = | 0,636+0,389tan(φ)1 | 0,636 |
0,364 | = | 0,389tan(φ)1 | :0,388 |
0,3890,364 | = | tan(φ)1 | |
| ↓ | Kehrbruch |
tan(φ) | = | 0,3630,389 | tan−1 |
φ | = | tan−1(0,3640,389)=46,90∘ | |