Springe zum Inhalt oder Footer
SerloDie freie Lernplattform

Kurse

Einführung in Lineare Abbildungen

12Beispiel für eine nichtlineare Abbildung

Als nächstes untersuchen wir, ob es auch nicht lineare Abbildungen gibt. Hierzu betrachten wir die Normabbildung auf der Ebene, die jedem Vektor seine Länge zuordnet:

Diese Abbildung ist keine lineare Abbildung, denn sie erhält weder die Vektoraddition noch die Skalarmultiplikation.

Dies zeigen wir mit Hilfe eines Gegenbeispiels:

Wir betrachten die Vektoren (1,0)T(1{,}0)^T und (0,1)TR2(0{,}1)T\in\mathbb{R}^2. Wenn wir die beiden Vektoren zuerst addieren und danach abbilden, so erhalten wir

Nun bilden wir die Vektoren zuerst ab und addieren dann die Ergebnisse:

Also gilt

Damit ist gezeigt, dass die Normabbildung ist nicht additiv ist. Dies reicht schon aus um zu zeigen, dass die Normalabbildung nicht linear ist.

Alternativ hätten wir auch zeigen können, dass die Normalabbildung nicht homogen ist. Es gilt nämlich


Dieses Werk steht unter der freien Lizenz
CC BY-SA 4.0Was bedeutet das?