Aufgaben
Finde alle Teiler von 9.

Für diese Aufgabe benötigst Du folgendes Grundwissen: Teilermenge

Zerlege die Zahl zunächst in Primfaktoren.
Danach kannst du die Menge aller Teiler bestimmen.

Primfaktorzerlegung

Zerlege zuerst 99 in ihre Primfaktoren.
99
Erster möglicher Primfaktor ist 33.
9:3=39:3=3
Die Primfaktorzerlegung ist damit abgeschlossen.
9=339=3\cdot3

Teilermenge

Stelle dann die Teilermenge auf. Da es nur den Primfaktor 33 gibt, ist nur dieser (neben 11 und 99) Element der Teilermenge.
T(9)={1;3;9}T\left(9\right)=\left\{1;3;9\right\}
Finde alle Teiler von 1414.

Für diese Aufgabe benötigst Du folgendes Grundwissen: Teilermenge

Zerlege die Zahl zuerst in Primfaktoren.
Danach kannst du die Menge aller Teiler bestimmen.

Primfaktorzerlegung

Zerlege zuerst 1414 in die Primfaktoren.
1414
Erster möglicher Primfaktor ist 22.
14:2=714:2=7
Die Primfaktorzerlegung ist damit abgschlossen.
14=2714=2*7

Teilermenge

Bestimme jetzt die Teilermenge. Nimm alle Primfaktoren sowie 11 und 1414 auf.
T(14)={1;2;7;14}T(14)=\left\{1;2;7;14\right\}
Finde alle Teiler von 1616.

Für diese Aufgabe benötigst Du folgendes Grundwissen: Teilermenge

Zuerst zerlegst du die 1616 in ihre Primfaktoren. Dann bildest du daraus die Teilermenge.

Primfaktorzerlegung

Zerlege zuerst 1616 in die Primfaktoren.
1616
Erster möglicher Primfaktor ist 22.
16:2=16:2=8
Nächster möglicher Primfaktor ist wieder 22.
8:2=48:2=4
Der nächste mögliche Primfaktor ist wieder 22.
4:2=24:2=2
Die Primfaktorzerlegung ist damit abgeschlossen.
16=222216=2*2*2*2

Teilermenge

Bestimme jetzt die Teilermenge. Multipliziere alle Primfaktoren untereinander (d.h. 222*2, 2222*2*2 und 22222*2*2*2). Nimm in die Teilermenge den Primfaktor (die 22 muss nur einmal aufgenommen werden), die erhaltenen Produkte sowie die 11 auf.
T(16)={1;2;4;8;16}T(16)=\left\{1;2;4;8;16\right\}
Zerlege 931 in Primfaktoren und bestimme mit Hilfe dieser Primfaktoren die Teilermenge T(931).
Hier geht es um die Primfaktorzerlegung und die Teilermenge.
Erster möglicher von 931931 Primfaktor ist 77.
931:7=133931:7=133
Nächster möglicher Primfaktor ist 7.
133:7=19133:7=19
Die Primfaktorzerlegung ist abgeschlossen.
931=7719\Rightarrow931=7\cdot7\cdot19

Teilermenge

Multipliere alle Primfaktoren untereinander:
77=49\displaystyle 7\cdot7=49
719=133\displaystyle 7\cdot19=133
7719=931\displaystyle 7\cdot7\cdot19=931
Stelle dann die Teilermenge auf. Nehme die 1, die Primfaktoren und die gerade errechneten Produkte auf.
T(931)={1;7;19;49;133;931}T(931)=\{1;7;19;49;133;931\}

Zerlege 11011 in Primfaktoren und bestimme die Teilermenge T(11011).

Für diese Aufgabe benötigst Du folgendes Grundwissen: Primfaktorzerlegung

Primfaktorzerlegung und Teilermenge

Primfaktorzerlegung

1101111011
Da 11011 weder durch 2, 3 noch durch 5 teilbar ist, ist der erste mögliche Primfaktor 7.
11011:7=157311011:7=1573
Der nächste mögliche Primfaktor ist 11.
1573:11=1431573:11=143
Der nächste mögliche Primfaktor ist wiederum 11.
143:11=13143:11=13
Die Primfaktorzerlegung ist damit abgeschlosssen.
11011=7111113\Rightarrow11011=7\cdot11\cdot11\cdot13


Teilermenge

Multipliere alle Primfaktoren untereinander:
711=77\displaystyle 7\cdot11=77
713=91\displaystyle 7\cdot13=91
1111=121\displaystyle 11\cdot11=121
1113=143\displaystyle 11\cdot13=143
71111=847\displaystyle 7\cdot11\cdot11=847
71113=1001\displaystyle 7\cdot11\cdot13=1001
111113=1573\displaystyle 11\cdot11\cdot13=1573
7111113=11011\displaystyle 7\cdot11\cdot11\cdot13=11011
Stelle dann die Teilermenge auf. Nimm die 1, die Primfaktoren und die gerade errechneten Produkte auf.
T(11011)={1;7;11;13;77;91;121;143;847;1001;1573;11011}T(11011)=\{1;7;11;13;77;91;121;143;847;1001;1573;11011\}
Zerlege 3059 in Primfaktoren und bilde die Teilermenge T(3059).
Hier geht es um die Primfaktorzerlegung und die Teilermenge.

Primfaktorzerlegung

Erster möglicher Primfaktor bei 30593059 ist 7.
3059:7=4373059:7=437
Nächster möglicher Primfaktor ist 19.
437:19=23437:19=23
Die Primfaktorzerlegung ist damit abgeschlossen.
3059=719233059=7\cdot19\cdot23


Teilermenge

Multipliere alle Primfaktoren untereinander:
719=133\displaystyle 7\cdot19=133
723=161\displaystyle 7\cdot23=161
1923=437\displaystyle 19\cdot23=437
71923=3059\displaystyle 7\cdot19\cdot23=3059
Stelle dann die Teilermenge auf. Nimm die 1, die Primfaktoren und die gerade errechneten Produkte auf.
T(3059)={1;7;19;23;133;161;437;3059}T(3059)=\left\{1;7;19;23;133;161;437;3059\right\}
Kommentieren Kommentare