Namensgeber dieses Versuches waren James Franck und Gustav Hertz, die ihn 1911 bis 1914 durchführten und dafür 1925 den Nobelpreis erhielten. Dies ist leicht nachvollziehbar, denn der Franck-Hertz-Versuch ist eine wichtige experimentelle Stütze des Bohrschen Atommodells und damit ein Wegbereiter der Quantenmechanik. Besonders an diesem Versuch ist sein einfacher Aufbau und damit die Möglichkeit ihn als Modellversuch in der Schule durchzuführen.

Aufbau

Stromkreislauf, Aufbau des James Frank Versuchs

Abbildung 1: Schematischer Aufbau

Benötigt wird eine evakuierte Glasröhre mit einem geringen Anteil eines Gases (meist Quecksilber oder Neon) unter einem Druck von 10 bis 20 mbar. An einem Ende der Röhre befindet sich die Glühkathode K. An sie ist die Heizspannung %%U_h%% von einigen Volt angelegt. Am gegenüberliegenden Ende der Röhre ist die sogenannte Auffangelektrode A mit einem Strommessgerät positioniert. Zwischen den beiden Elementen ist eine Gitteranode G angebracht. Die Beschleunigungsspannung %%U_b%% zwischen Kathode und Gitter ist stufenlos regelbar. Eine letzte Spannung, die Gegenfeldspannung %%U_g%% von 1 bis 2 Volt, ist zwischen Gitter und Auffangelektrode angelegt.

Durchführung

Die Gegenfeldspannung zwischen Gitter und Auffangelektrode bleibt während des Versuches unverändert. Ebenso wird die Glühkathode mit einer konstanten Spannung betrieben. Lediglich die an der Kathode austretenden Elektronen werden mit einer regelbaren Spannung beschleunigt. Dies geschieht von 0 Volt bis zur gewünschten Maximalspannung. Abhängig von der angelegten Beschleunigungsspannung wird der Strom an der Auffangelektrode gemessen.

Beobachtungen

Beobachtet man die Glasröhre, so sieht man zu Beginn keine Veränderung. Erst bei einer bestimmten Spannung (für Quecksilber 4,9 V) kann man kurz vor dem Gitter einen leuchtenden Streifen wahrnehmen. Dieser verschiebt sich in Richtung der Kathode, wenn die Spannung weiter erhöht wird. Wird das Doppelte der zuvor erwähnten Spannung erreicht, erscheinen zwei solcher Streifen. Bei der dreifachen Spannung drei, wie in der Abildung zu sehen, bei der vierfachen Spannung vier und so weiter.

Glasrohre mit Neon

Abbildung 2: Glasröhre mit Neon

Betrachtet man den Verlauf der Stromstärke in Abhängigkeit der angelegten Beschleunigungsspannung, stellt man periodisch wiederkehrende Minima und Maxima dieser fest. Die Spannungswerte, bei denen Minima der Stromstärke auftreten, stimmen mit denen überein, bei welchen man die Leuchtstreifen beobachten kann.

Für Quecksilber sieht das Strom-Spannungs-Diagramm typischerweise folgend aus.

Graph der gemessenen Stromstärke in Abhängigkeit der angelegten Spannung

Abbildung 3: Gemessene Stromstärke in Abhängigkeit der angelegten Spannung

Erklärung

Die Elektronen treten aufgrund des glühelektrischen Effektes aus der Kathode aus und werden mit Hilfe der Beschleunigungsspannung zum Gitter beschleunigt. Zwischen Gitter und Auffangelektrode existiert ein Gegenfeld aufgrund der dort angelegten Spannung. Dieses ist, wie es der Name schon sagt, entgegen der Bewegung der Elektronen gerichtet und bremst diese folglich ab. Nur Elektronen deren kinetische Energie mindestens so groß ist wie die elektrische Energie des Gegenfeldes, können die Auffangelektrode erreichen. Nur wenn Elektronen es bis zu dieser Elektrode schaffen, wird ein Strom messbar.

Bei geringer Beschleunigungsspannung zu Beginn erreichen somit nur wenige Elektronen die Auffangelektrode und es fließt nur ein geringer Strom. Mit steigender Spannung nimmt dann folglich auch die Stromstärke zu, bis sie ihr erstes Maximum erreicht hat (Abschnitt 1 in der Abbildung).

Bei einem bestimmten Spannungswert, wie z.B. 4,9 V für Quecksilber, kommt es zur schnellen Abnahme der Stromstärke (Abschnitt 2 der Abbildung), da die Elektronen ihre Energie an die Gasatome abgeben. Dies geschieht über unelastische Stöße zwischen den Elektronen und den in der Glasröhre enthaltenen Gasatomen kurz vor dem Gitter. Dabei geben die Elektronen ihre gesamte kinetische Energie an die Atome ab und können daher die Auffangelektrode nicht mehr erreichen. Zu diesen Stößen kommt es nur bei der bestimmten Spannung, da erst dann die Energie der Elektronen gleich der Energie des niedrigstens Anregungsniveaus der Gasatome ist. Lediglich in dem Fall, dass die kinetische Energie der Elektronen einem Anregungsniveau der Atome entspricht, können die Atome die Energie der Elektronen aufnehmen. Stöße zwischen Elektronen und Gasatome finden auch schon bei geringen Spannungen statt, jedoch sind diese elastisch, d.h. es wird keine Energie übertragen. Die Stromstärke sinkt dennoch nicht wieder ganz auf 0 ab, da nicht jedes Elektron einen Stoßpartner findet. Somit erreichen weiterhin einige Elektronen die Auffangelektrode. Zu den Leuchterscheinungen kommt es, da die nun angeregten Atome wieder in ihren Grundzustand übergehen, indem sie die zuvor erhaltene Energie in Form von Licht wieder abgeben.

Wird die Spannung nun weiter erhöht, werden die Elektronen, die mit Atomen gestoßen haben und keine kinetische Energie mehr besitzen, erneut beschleunigt. Sie können wieder die Auffangelektrode erreichen und die Stromstärke steigt (Abschnitt 3).

Bei einer ausreichend hohen Spannung stoßen die Elektronen mehrmals mit den Gasatomen (Abschnitt 4). Der erste Stoß geschieht nun früher, da die nötige kinetische Energie nach einer kürzeren Strecke erreicht wird. Nach dem Stoß werden die Elektronen erneut beschleunigt und die Spannung und der vorhandene Weg bis zum Gitter reichen aus, um ein weiteres Mal die benötigte kinetische Energie zum Stoßen zu erlangen. Ist die Spannung hoch genug kann dieses immer öfter geschehen.

Die Abstände zwischen den Minima der Stromstärke sind dabei periodisch und entsprechen dem Wert der Spannung, die für einen ersten Stoß also die Beobachtung des ersten Leuchtstreifens nötig ist. Dies erklärt sich dadurch, dass die kinetische Energie der Elektronen gleich der elektrischen Energie des Beschleunigungsfeldes ist. D.h. %%E_{kin}=E_{elektrisch}=U \cdot e%%. Die Energie der Elektronen muss für den Stoß immer gleich groß sein, folglich muss auch die benötigte Spannung gleich sein. Bzw. muss sie für zwei Stöße doppelt so groß sein, da insgesamt die zweifache Energie benötigt wird.

Bedeutung für die Quantenmechanik

Der Franck-Hertz-Versuch belegt, dass Atome nur ganz bestimmte Energiemengen aufnehmen könnenn und nicht etwa kontinuierlich. Dies bestätigt die Postulate des bohrschen Atommodells. Nach diesem existieren diskrete Energieniveaus der Elektronen um den Atomkern. Diese Idee von einer Diskontinuität in der Natur der kleinsten Teilchen ist ein wichtiges Prinzip der Quantenmechanik und wird durch diesen Versuch mit Hilfe eines relativ simplen Experimentes demonstriert.

Quellen

Abbildung 2: "Franck-Hertz-Neon-3" by Infoczo - Own work. Licensed under CC BY-SA 4.0 via Wikimedia Commons

Kommentieren Kommentare