Prüfe, ob die beiden Vektoren senkrecht aufeinander stehen.
und
Für diese Aufgabe benötigst Du folgendes Grundwissen: orthogonale Vektoren
Zwei Vektoren stehen senkrecht aufeinander, wenn ihr Skalarprodukt ergibt.
Das Skalarprodukt von und ist . Die beiden Vektoren stehen also senkrecht aufeinander.
Hast du eine Frage oder Feedback?
und
Für diese Aufgabe benötigst Du folgendes Grundwissen: orthogonale Vektoren
Zwei Vektoren stehen senkrecht aufeinander, wenn ihr Skalarprodukt ergibt.
Das Skalarprodukt von und ist .Die beiden Vektoren stehen also nicht senkrecht aufeinander.
Hast du eine Frage oder Feedback?
und
Für diese Aufgabe benötigst Du folgendes Grundwissen: orthogonale Vektoren
Zwei Vektoren stehen senkrecht aufeinander, wenn ihr Skalarprodukt ergibt.
=
Das Skalarprodukt von und ist .Die beiden Vektoren stehen also senkrecht aufeinander.
Hast du eine Frage oder Feedback?
und
Orthogonalität von Vektoren
Zwei Vektoren stehen senkrecht aufeinander, wenn ihr Skalarprodukt ergibt.
Falls du einen Taschenrechner benutzt, ist die Rechnung natürlich kein Problem. Mit einer kleinen Nebenrechnung kommst du aber auch ohne Nebenrechnung weiter.
Nebenrechnung:
Damit ergibt sich insgesamt:
Das Skalarprodukt von und ist . Die beiden Vektoren stehen also senkrecht aufeinander.
Hast du eine Frage oder Feedback?
Dieses Werk steht unter der freien Lizenz
CC BY-SA 4.0 → Was bedeutet das?