Springe zum Inhalt oder Footer
SerloDie freie Lernplattform

Geometrie, Teil A, Aufgabengruppe 1

🎓 Prüfungsbereich für Bayern

Weitere Bundesländer & Aufgaben:
Mathe- Prüfungen Startseite

Austausch & Hilfe:
Prüfungen-Discord

  1. 1

    Gegeben ist die Gerade g:X=(011)+λ(101)g: \vec{X} = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}+\lambda\cdot \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} mit λR.\lambda \in \mathbb{R}.

    1. Zeigen Sie, dass gg in der Ebene mit der Gleichung x1+x2+x3=2x_1+x_2+x_3=2 liegt. (2 P)

    2. Gegeben ist außerdem die Schar der Geraden ha:X=(001)+μ(1a0)h_a: \vec{X} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}+\mu\cdot \begin{pmatrix} 1 \\ a \\ 0 \end{pmatrix}

      mit μR\mu \in \mathbb{R} und aR.a \in \mathbb{R}. Weisen Sie nach, dass gg und hah_a für jeden Wert von aa windschief sind. (3 P)


Dieses Werk steht unter der freien Lizenz
CC BY-SA 4.0Was bedeutet das?