Skizziere mit Hilfe den gegebenen Informationen jeweils einen möglichen Verlaufdes Graphen der folgenden Funktionen.
Die Polynomfunktion f vom Grad 3 besitzt Nullstellen bei x1=−3, x2=2 und x3=4 und schneidet die y-Achse im Punkt (0∣2).
Für diese Aufgabe benötigst Du folgendes Grundwissen: Nullstellen
Gegeben:
Polynomfunktion vom Grad 3
Nullstellen bei x1=−3,x2=2,x3=4 und Punkt (0,2)
Gesucht: Skizze von Graph
Zeichne zuerst die gegebenen Punkte in ein Koordinatensystem. Die Nullstellen liegen auf der x-Achse.
Da die Funktion vom Grad 3 ist, kann es keine weiteren Nullstellen geben und die drei Nullstellen sind einfache Nullstellen.
Der Verlauf geht also von (−3,0) zu (0,2) und dann zu (2,0). Wichtig ist, dass er NICHT nochmal die x-Achse schneidet. Wo der Hochpunkt zwischen −3 und 2 genau ist, ist egal.
Zeichne als Nächstes den Graph zwischen 2 und 4 weiter. Dort verläuft er im negativen Bereich. Auch hier ist egal, wo der Tiefpunkt zwischen 2 und 4 genau ist.
Zeichne jetzt den ganzen Graphen. Auch (−3,0) und (4,0) sind einfache Nullstellen, also schneidet der Graph die x-Achse.
Lösung:
Hast du eine Frage oder Feedback?
Die Polynomfunktion g vom Grad 4 hat genau eine doppelte Nullstelle und ihr Graph ist symmetrisch zur y-Achse.
Für diese Aufgabe benötigst Du folgendes Grundwissen: Nullstellen
Gegeben: Polynomfunktion vom Grad 4, genau eine doppelten Nullstelle, und der Graph symmetrisch zur y-Achse
Gesucht: Skizze eines möglichen Graphen
Überlege zunächst, wo die doppelte Nullstelle hinkommt. Da der Graph symmetrisch zur y-Achse ist, muss sie bei (0,0) sein, denn wenn sie z.B. bei (2,0) wäre, müsste durch die Symmetrie bei (−2,0) auch eine sein. Ob der Graph die x-Achse von unten oder von oben berührt, ist beides richtig.
Zeichne jetzt den weiteren Verlauf.
Beachte dabei: Die Funktion ist vom Grad 4, also hat sie höchstens zwei weitere Nullstellen. Außerdem auch nur maximal 3 Extremstellen.
Eine mögliche Lösung:
Hast du eine Frage oder Feedback?
Die Polynomfunktion h vom Grad 6 besitzt zwei mehrfache Nullstellen.
Für diese Aufgabe benötigst Du folgendes Grundwissen: Nullstellen
Gegeben: Polynomfunktion vom Grad 6, zwei mehrfache Nullstellen
Gesucht: Skizze von möglichem Graphen
Bei dieser Aufgabe gibt es viele verschiedene Möglichkeiten, hier wird eine 3-fache Nullstelle bei x=−1 und eine doppelte Nullstelle bei x=2 verwendet.
Du kannst aber beispielsweise auch zwei 3-fache Nullstellen einzeichnen, oder zwei doppelte, oder eine doppelte und eine 4-fache.
Skizziere als Erstes den Verlauf der Funktion an einer Nullstelle.
Überlege dann den Verlauf zur zweiten Nullstelle und wie er dort weiterläuft.
Ergänze jetzt den Graphen noch so, dass er zu einer Funktion vom Grad 6 passt. Dabei ist wichtig, dass der Graph entweder auf beiden Seiten nach +∞ oder auf beiden Seiten nach −∞ läuft.
Achte darauf, dass die Vielfachheiten der Nullstellen insgesamt höchstens 6 ergeben. Hier ist es eine 3-fache, eine doppelte und noch eine einfache Nullstelle.
Eine mögliche Lösung
Hast du eine Frage oder Feedback?