Vereinfache den Term 169⋅x+169⋅x2 und gib an, für welche Werte von x sich der Termwert 0 ergibt.
Für diese Aufgabe benötigst Du folgendes Grundwissen: Wurzeln
Definitionsmenge bestimmen
169⋅x+169⋅x2
Beim ersten Summand steht x alleine. Man kann also alle reellen Zahlen für x einsetzen.
Beim zweiten Summanden steht x2 unter der Wurzel. Die Anforderung des Definitionsbereiches einer Wurzel ist, dass keine negative Zahl drin stehen darf. Das x in dieser Wurzel steht aber im Quadrat, das bedeutet das der Wert für alle Zahlen x nicht-negativ wird, egal ob das ursprüngliche x negativ oder positiv war.
Also kann man alle reellen Zahlen für x einsetzen.
D=R
Radizieren
169⋅x+169⋅x2
Schreibe 169 als Quadratzahlen.
169⋅x+169⋅x2 | = | 132⋅x+132⋅x2 | |
↓ | Beachte die Rechenregeln zum Radizieren und vor allem die Betragsstriche. | ||
= | 13⋅x+13⋅∣x∣ |
Betrag auflösen
Nun musst du noch den Betrag auflösen. Dafür benötigst du eine Fallunterscheidung.
1. Fall: Positive x, also x≥0
Wenn man nur positive x-Werte einsetzt kann man die Betragsstriche weglassen.
13⋅x+13⋅∣x∣ | = | 13x+13x | |
= | 26x |
26x=0, wenn x=0 gilt.
2. Fall: Negative x, also x≤0
13⋅x+13⋅∣x∣
Wenn man nur negative x-Werte einsetzt, kann man −x anstatt ∣x∣ schreiben
13⋅x+13⋅∣x∣ | = | 13x+13⋅(−x) | |
= | 13x−13x | ||
= | 0 |
Für negative x-Werte wird der Ausdruck also immer 0.
Der Term 169⋅x+169⋅x2 wird also 0 für alle x≤0 , also für x=0 und alle negativen Zahlen.