Springe zum Inhalt oder Footer
SerloDie freie Lernplattform

Aufgaben zu Termen mit Quadratwurzeln

Hier findest du gemischte Aufgaben zu Termen mit Quadratwurzeln. Lerne, Quadratwurzeln zu vereinfachen und den Wert von Wurzeltermen zu bestimmen!

  1. 1

    Gib an für welche Zahlen der Term definiert ist und schreibe ohne Wurzelzeichen.

    1. 52x18x5\cdot\sqrt{2x}\cdot\sqrt{18x}

    2. 2a212a8a\displaystyle\frac{\sqrt{2a^2}\cdot\sqrt{12a}}{\sqrt{8a}}

    3. (d2)2\left(\sqrt{d-2}\right)^2

    4. (d2)2\sqrt{\left(d-2\right)^2}

  2. 2

    Gib den Definitionsbereich an.

    1. x36\sqrt{\mathrm x-36}

    2. 36+x2\sqrt{36+\mathrm x^2}

    3. 1x+36\frac1{\sqrt{\mathrm x+36}}

    4. x236\sqrt{\mathrm x^2-36}

  3. 3

    Gib jeweils die maximale Definitionsmenge an und schreibe – wenn möglich – ohne Wurzelzeichen.

    1. 49a4b2\sqrt{49a^4b^2}

    2. (b)2\sqrt{\left(-b\right)^2}

    3. b  2\sqrt{-b}^{\;2}

    4. (12x)2\sqrt{\left(1-2x\right)^2}

    5. (xy)2\sqrt{\left(x-y\right)^2}

    6. x2+y2\sqrt{x^2+y^2}

    7. x2y2\sqrt{x^2\cdot y^2}

  4. 4

    Vereinfache:

    1. 500+39858345\sqrt{500}+3\sqrt{98}-5\sqrt8-3\sqrt{45}

    2. 64k2\sqrt{64k^2}

    3. (x5y5a:x3y3a2)25xa                (x,  y,  z  >  0)\left(\sqrt{\frac{x^5y}{5a}}:\sqrt{\frac{x^3y^3}{a^2}}\right)\cdot\sqrt{\frac{25x}a}\;\;\;\;\;\;\;\;\left(x,\;y,\;z\;>\;0\right)

  5. 5

    Vereinfache den Term 169x+169x2\sqrt{169}\cdot x+\sqrt{169\cdot x^2} und gib an, für welche Werte von xx sich der Termwert 00 ergibt.

  6. 6

    Beim Lösen quadratischer Gleichungen erhält man z. B. Ausdrücke der folgenden Art. Vereinfache diese:

    1. x1/2=14±142482x_{1/2}=\frac{-14\pm\sqrt{14^2-4\cdot8}}2

    2. x1/2=5±52+472727x_{1/2}=\frac{-5\pm\sqrt{5^2+4\cdot\sqrt{7}\cdot2\sqrt{7}}}{2\sqrt{7}}

  7. 7

    Begründe, dass für positive aa gilt: 1a=aa\frac1{\sqrt a}=\frac{\sqrt a}a

  8. 8

    Für welche Werte von xx ist die „Aussage“ jeweils wahr?

    1. x2=x\sqrt{x^2}=-x

    2. (x1)2=x1\sqrt{\left(x-1\right)^2}=x-1


Dieses Werk steht unter der freien Lizenz
CC BY-SA 4.0Was bedeutet das?