Für welche Winkel  %%\gamma%%  gilt:  %%\gamma\in\left[0^\circ;\;360^\circ\right]%%  und  %%\cos\left(\gamma\right)=-\sin\left(\gamma\right)%%  ?

Trigonometrie

%%\cos\left(\gamma\right)=-\sin\left(\gamma\right)%%

Der/Die Winkel müssen im zweiten und vierten Quadranten liegen.

  %%\sin\left(\gamma\right)=\cos\left(\gamma\right)%%  wenn gilt  %%\gamma=45^\circ%%

Dem Winkel  %%\gamma=45^\circ%%  entsprechen

1.Winkel

%%Syntax error from line 1 column 323 to line 1 column 328. Unexpected ''.%%

%%Syntax error from line 1 column 253 to line 1 column 258. Unexpected ''.%%

%%\gamma=135^\circ%%

%%-\left(\frac{\sqrt2}2\right)=-\frac{\sqrt2}2%%

2.Winkel

%%Syntax error from line 1 column 325 to line 1 column 330. Unexpected ''.%%

%%Syntax error from line 1 column 253 to line 1 column 258. Unexpected ''.%%

%%\gamma=315^\circ%%

%%-\left(-\frac{\sqrt2}2\right)=\frac{\sqrt2}2%%

%%\frac{\sqrt2}2=\frac{\sqrt2}2%%