Gegeben sind gebrochen-rationale Funktionen der Form f(x)=x+ba+c.
Überprüfe rechnerisch, welche der gegebenen Punkte auf dem Graphen der Funktion f liegen.
Hinweis: Bei der Eingabe deiner Lösung gib die Punktnummern durch Komma getrennt ein (z.B. so: 1,2,4). In diesem Fall würden die Punkte P1,P2 und P4 auf dem Graphen der Funktion f liegen, die Punkte P3 und P5 hingegen nicht. Es können bei jeder Teilaufgabe 1 bis 5 Punkte auf dem Graphen der Funktion f liegen.
f(x)=x−32+1
P1(−2∣0,6);P2(−1∣0,4);P3(1∣0);P4(4∣3);P5(3,5∣4)
Für diese Aufgabe benötigst Du folgendes Grundwissen: Funktionen
Setze P1(−2∣0,6) in f(x)=x−32+1 ein:
0,60,60,60,6====−2−32+1−52+1−0,4+10,6✓
Das ist eine wahre Aussage, der Punkt P1 liegt auf dem Graphen von f.
Setze P2(−1∣0,4) in f(x)=x−32+1 ein:
0,40,40,40,4====−1−32+1−42+1−0,5+10,5
Das ist eine falsche Aussage, der Punkt P2 liegt nicht auf dem Graphen von f.
Setze P3(1∣0) in f(x)=x−32+1 ein:
0000====1−32+1−22+1−1+10✓
Das ist eine wahre Aussage, der Punkt P3 liegt auf dem Graphen von f.
Setze P4(4∣3) in f(x)=x−32+1 ein:
3333====4−32+112+12+13✓
Das ist eine wahre Aussage, der Punkt P4 liegt auf dem Graphen von f.
Setze P5(3,5∣4) in f(x)=x−32+1 ein:
4444====3,5−32+10,52+14+15
Das ist eine falsche Aussage, der Punkt P5 liegt nicht auf dem Graphen von f.
Antwort: Deine Eingabe im Lösungsfeld muss also lauten: 1,3,4
Hast du eine Frage oder Feedback?
Setze nacheinander die Koordinaten der gegebenen Punkte in die Funktionsgleichung ein und prüfe, ob sich eine wahre Aussage ergibt.
f(x)=x+1−3−2
P1(−5∣−1,1);P2(−4∣−1);P3(−2∣1);P4(1∣−3,5);P5(4∣−2,6)
Für diese Aufgabe benötigst Du folgendes Grundwissen: Funktionen
Setze P1(−5∣−1,1) in f(x)=x+1−3−2 ein:
−1,1−1,1−1,1−1,1====−5+1−3−2−4−3−20,75−2−1,25
Das ist eine falsche Aussage, der Punkt P1 liegt nicht auf dem Graphen von f.
Setze P2(−4∣−1) in f(x)=x+1−3−2 ein:
−1−1−1−1====−4+1−3−2−3−3−21−2−1✓
Das ist eine wahre Aussage, der Punkt P2 liegt auf dem Graphen von f.
Setze P3(−2∣1) in f(x)=x+1−3−2 ein:
1111====−2+1−3−2−1−3−23−21✓
Das ist eine wahre Aussage, der Punkt P3 liegt auf dem Graphen von f.
Setze P4(1∣−3,5) in f(x)=x+1−3−2 ein:
−3,5−3,5−3,5−3,5====1+1−3−22−3−2−1,5−2−3,5✓
Das ist eine wahre Aussage, der Punkt P4 liegt auf dem Graphen von f.
Setze P5(4∣−2,6) in f(x)=x+1−3−2 ein:
−2,6−2,6−2,6−2,6====4+1−3−25−3−2−0,6−2−2,6✓
Das ist eine wahre Aussage, der Punkt P5 liegt auf dem Graphen von f.
Antwort: Deine Eingabe im Lösungsfeld muss also lauten: 2,3,4,5
Hast du eine Frage oder Feedback?
Setze nacheinander die Koordinaten der gegebenen Punkte in die Funktionsgleichung ein und prüfe, ob sich eine wahre Aussage ergibt.
f(x)=x+1,51,5−2
P1(−4∣−2,5);P2(−3∣−3);P3(−2∣−5,5);P4(−1∣1);P5(1∣−1,3)
Für diese Aufgabe benötigst Du folgendes Grundwissen: Funktionen
Setze P1(−4∣−2,5) in f(x)=x+1,51,5−2 ein:
−2,5−2,5−2,5−2,5====−4+1,51,5−2−2,51,5−2−0,6−2−2,6
Das ist eine falsche Aussage, der Punkt P1 liegt nicht auf dem Graphen von f.
Weil f(-4) = -2,6 < -2,5 gilt, liegt der Punkt unterhalb des Graphen von f.
Setze P2(−3∣−3) in f(x)=x+1,51,5−2 ein:
−3−3−3−3====−3+1,51,5−2−1,51,5−2−1−2−3✓
Das ist eine wahre Aussage, der Punkt P2 liegt auf dem Graphen von f.
Setze P3(−2∣−5,5) in f(x)=x+1,51,5−2 ein:
−5,5−5,5−5,5−5,5====−2+1,51,5−2−0,51,5−2−3−2−5
Das ist eine falsche Aussage, der Punkt P3 liegt nicht auf dem Graphen von f.
Weil f(-2) = -5 > -5,5 gilt, liegt der Punkt oberhalb des Graphen von f.
Setze P4(−1∣1) in f(x)=x+1,51,5−2 ein:
1111====−1+1,51,5−20,51,5−23−21✓
Das ist eine wahre Aussage, der Punkt P4 liegt auf dem Graphen von f.
Setze P5(1∣−1,3) in f(x)=x+1,51,5−2 ein:
−1,3−1,3−1,3−1,3====1+1,51,5−22,51,5−20,6−2−1,4
Das ist eine falsche Aussage, der Punkt P5 liegt nicht auf dem Graphen von f.
Weil f(1)=−1,4<−1,3 gilt, liegt der Punkt oberhalb des Graphen von f.
Antwort: Deine Eingabe im Lösungsfeld muss also lauten: 2,4
Hast du eine Frage oder Feedback?
Setze nacheinander die Koordinaten der gegebenen Punkte in die Funktionsgleichung ein und prüfe, ob sich eine wahre Aussage ergibt.
Dieses Werk steht unter der freien Lizenz
CC BY-SA 4.0 → Was bedeutet das?