Die Gerade wird durch Drehung um den Ursprung mit dem Winkelmaß auf die Gerade abgebildet. Berechne die Geradengleichung von .
mit
Für diese Aufgabe benötigst Du folgendes Grundwissen: Drehung einer Gerade
Skizze:
Die Gerade mit soll mit dem Winkel um den Ursprung gedreht werden.
Gesucht ist jetzt also die Geradengleichung von .
Man wählt einen allgemeinen Punkt auf der Geraden und dreht diesen um um den Ursprung:
Als letztes muss noch der Trägergraph bestimmt werden:
Dazu löst man die (1)-Gleichung nach auf.
Setze (1') in (2) ein:
Die gedrehte Gerade hat demnach folgende Gleichung
Hast du eine Frage oder Feedback?
mit
Für diese Aufgabe benötigst Du folgendes Grundwissen: Drehung einer Gerade
,
Wähle einen beliebigen Punkt auf der Gerade.
Nun spiegelst du diesen Punkt an der Geraden auf den Bildpunkt .
Setze den allgemeinen Punkt und den Winkel in die Gleichung ein.
Führe die Matrix-Vektor-Multiplikation durch.
ist ein beliebiger Punkt auf der Bildgeraden.
Bestimme nun den Trägergraph .
Löse die erste Gleichung nach auf und setze diese in die zweite Gleichung ein.
Die gespiegelte Gerade
Hast du eine Frage oder Feedback?
mit
Für diese Aufgabe benötigst Du folgendes Grundwissen: Drehung einer Gerade
Die Gerade mit soll mit dem Winkel um den Ursprung gedreht werden.
Gesucht ist jetzt also die Geradengleichung von .
Man wählt einen allgemeinen Punkt auf der Geraden und dreht diesen um um den Ursprung:
Als letztes muss noch der Trägergraph bestimmt werden:
Dazu löst man die (1)-Gleichung nach auf.
Setze (1') in (2) ein:
Die gedrehte Gerade hat demnach folgende Gleichung
Hast du eine Frage oder Feedback?
Dieses Werk steht unter der freien Lizenz
CC BY-SA 4.0 → Was bedeutet das?