Max möchte ein Paket verschicken. Für 1m2 muss er 1,50€ bezahlen. Sein Paket ist 20 cm hoch, 30 cm breit und 15 cm lang. Wieviel Pappe braucht er und wieviel muss er dafür bezahlen?
Für diese Aufgabe benötigst Du folgendes Grundwissen: Oberflächeninhalt eines Quaders
Berechnen des Oberflächeninhalts
Da das Paket quaderförmig ist, muss man den Oberflächeninhalt eines Quaders berechnen können. Dazu benötigst du die Formel O=2⋅l⋅h+2⋅l⋅b+2⋅b⋅h. Das l steht in dem Fall für die Länge, das b für die Breite und das h für die Höhe.
Gegeben ist…
l = 15 cm
b = 30 cm
h = 20 cm
Du fügst nun die gegebenen Werte in die Variablen der Formel ein.
O=2⋅15cm⋅20cm+2⋅15cm⋅30cm+2⋅30cm⋅20cm
Du berechnest nun zuerst die Produkte der Formel.
O=600cm2+900cm2+1200cm2
Danach zählst du alle Zwischenergebnisse zusammen
O=2700cm2
Und hast nun dein Endergebnis für den Oberflächeninhalt des Pakets.
Umrechnen von Flächeneinheiten
Du weißt jetzt, wie groß die Oberfläche vom Paket ist und kannst gleich berechnen, wieviel das Paket im Bezug auf die Pappe kostet. Davor musst du aber die cm2 in m2 umrechnen.
1m2=?cm2
Zum umrechnen eines Quadratmeters in Quadratzentimetern muss du 4 Nullen hinzufügen. 2 Stück für die Umrechnung in dm2 und 2 für cm2.
1m2=10000cm2
Du musst nun schauen wie oft diese Zahl in unser voheriges Ergebnis passt, damit du weißt wie groß der Anteil von einem m2 ist, um den Preis zu berechnen.
10000cm22700cm2=0,27
Den Anteil hast du nun berechnet. Hier kürzt sich bereits das cm2. Das Ergebnis ist der Anteil an einem m2. Damit kannst du nun den Preis berechnen, indem du das errechnete Ergebnis mit dem Preis multiplizierst.
0,27⋅1,50€=0,405€
Das Ergebnis ist bereits der Preis.
In dem Fall kostet das Paket also rund 41ct.