🎓 Ui, schon Prüfungszeit? Hier geht's zur Mathe-Prüfungsvorbereitung.
Springe zum Inhalt oder Footer
SerloDie freie Lernplattform

Bestimme jeweils das Skalarprodukt der folgenden Vektoren:

  1. v1=(27)v_1 = \begin{pmatrix}-2\\7\end{pmatrix} \\ und  v2=(53)\ v_2 = \begin{pmatrix}5\\3\end{pmatrix}

  2. w1=(13)w_1=\begin{pmatrix}1\\3\end{pmatrix} \\ und  w2=(93)\ w_2=\begin{pmatrix}-9\\3\end{pmatrix}

  3. c1=(81)c_1 = \begin{pmatrix}-8\\1\end{pmatrix} \\ und  c2=(06)\ c_2=\begin{pmatrix}0\\6\end{pmatrix}

  4. d1=(0107)d_1 = \begin{pmatrix}0\\107\end{pmatrix} \\ und  d2=(3420)\ d_2=\begin{pmatrix}-342\\0\end{pmatrix}

  5. u=(0,51)\vec{u} =\begin{pmatrix} 0{,}5\\-1 \end{pmatrix} und v=(42)\vec{v} = \begin{pmatrix} 4\\2 \end{pmatrix}

  6. u=(711)\vec{u} =\begin{pmatrix} 7\\11 \end{pmatrix} und v=(01/2)\vec{v} = \begin{pmatrix} 0\\1/2 \end{pmatrix}

  7. u=(03π)\vec{u} =\begin{pmatrix} 0\\-3\pi \end{pmatrix} und v=(20)\vec{v} = \begin{pmatrix} \sqrt{2}\\0 \end{pmatrix}

  8. a=(2245)\vec a = \begin{pmatrix} 2\sqrt{2} \\ 45^\circ \end{pmatrix} und b=(3120)\vec b = \begin{pmatrix} \sqrt{3} \\ 120^\circ \end{pmatrix}