Suche
suchen

Was heißt Kürzen?

Im vorigen Kapitel hast du gelernt, dass sich Brüche erweitern lassen, indem man die Bruchteile in gleich große Teilstücke unterteilt bzw. Zähler und Nenner mit der gleichen Zahl multipliziert.

Wir können aber umgekehrt Teilstücke zusammenfassen bzw. Zähler und Nenner durch die gleiche Zahl dividieren.

Beispiel

48\dfrac48 des Rechtecks sind blau gefärbt.

Wenn wir jeweils zwei nebeneinanderliegende Felder zusammenfassen, lässt sich der blau gefärbte Bruchteil des Rechteck schreiben als 24\dfrac24 schreiben.

Fassen wir nochmals jeweils 2 übereinander Felder zusammen, erhalten wir den Bruch 12\dfrac12.

Anschaulich ist dadurch auch klar, dass gilt:

Anstatt wie beim Erweitern Zähler und Nenner mit der gleichen Zahl zu multiplizieren, können wir also auch Zähler und Nenner durch die gleiche Zahl dividieren.

Hier gilt: 4:28:2=24\dfrac{4:2}{8:2}=\dfrac24 und 2:24:2=12\dfrac{2:2}{4:2}=\dfrac12

Formal können wir das schreiben als:

Dieses Vorgehen nennt man "Kürzen".

Anschaulich betrachtet bedeutet "Kürzen" eine Vergröberung der Unterteilung. Mathematisch die Division von Zähler und Nenner mit der gleichen Zahl.

Wichtig: Der Wert des Bruchs ändert sich dabei nicht!

Beispiele

Kürze den Bruch 39\dfrac39 mit der Zahl 3.

Anschaulich: Fasse jeweils 3 Teile zusammen

Mathematisch:

Dividiere Zähler und Nenner durch die Zahl 3

39=313  \dfrac39\overset3=\dfrac13\; oder   39=3:39:3=13\;\dfrac39=\dfrac{3:3}{9:3}=\dfrac13

Übungsaufgaben

1)

Lade: /20318

2)

Lade: /20342

3)

Lade: /20346


Dieses Werk steht unter der freien Lizenz
CC BY-SA 4.0Was bedeutet das?