Bestimme die Gleichung der Geraden, die durch den Punkt P geht und senkrecht zur gegebenen Gerade steht.
y=3x+2
P(3∣5)
Für diese Aufgabe benötigst Du folgendes Grundwissen: Geradengleichung und Geradensteigung
Bestimme zunächst die Steigung der zu g(x):y=3x+2 senkrechten Geraden h mit der Formel.
m2=−m11
Setz den Wert ein.
m2=−31
Die gesuchte Senkrechte hat also Steigung −31.
Bestimme nun den y-Achsenabschnitt der Senkrechten h mit dem gegebenen Punkt P(3∣5), indem du den Punkt in die allgemeine Geradengleichung einsetzt.
h(xp):yp=m2xp+b
Setze die Werte ein.
5=−31⋅3+b∣+1
Vereinfache und addiere 1.
6=b⇔b=6
Also lautet die gesuchte Geradengleichung h(x):y=−31x+6.
Hast du eine Frage oder Feedback?
y=0,5x+1
P(1∣2)
Für diese Aufgabe benötigst Du folgendes Grundwissen: Geradengleichung und Geradensteigung
Bestimme zunächst die Steigung der zu g(x):y=0,5x+1 senkrechten Geraden h mit der Formel.
m2=−m11
Setz den Wert ein.
m2=−0,51=−211=−2
Die gesuchte Senkrechte hat also Steigung −2.
Bestimme nun den y-Achsenabschnitt der Senkrechten h mit dem gegebenen Punkt P(1∣2), indem du den Punkt in die allgemeine Geradengleichung einsetzt.
h(xp):yp=m2xp+b
Setz die Werte ein.
2=−2⋅1+b ∣+2
Vereinfache und addiere 2.
4=b⇒b=4
Also lautet die gesuchte Geradengleichung h(x):y=−2x+4.
Hast du eine Frage oder Feedback?
y=−5x+6
P(−10∣1)
Für diese Aufgabe benötigst Du folgendes Grundwissen: Geradengleichung und Geradensteigung
Bestimme zunächst die Steigung der zu g(x):y=−5x+6 senkrechten Geraden h mit der Formel.
m2=−m11
Setz den Wert ein.
m2=−−51=0,2
Die gesuchte Senkrechte hat also Steigung 0,2.
Bestimme nun den y-Achsenabschnitt der Senkrechten h mit dem gegebenen Punkt P(−10∣1), indem du den Punkt in die allgemeine Geradengleichung einsetzt.
h(xp):yp=m2xp+b
Setz die Werte ein.
1=0,2⋅(−10)+b ∣+2
Vereinfache und addiere 2.
3=b⇒b=3
Also lautet die gesuchte Geradengleichung h(x):y=0,2x+3.
Hast du eine Frage oder Feedback?
y=4x+3
P(2∣−5)
Für diese Aufgabe benötigst Du folgendes Grundwissen: Geradengleichung und Geradensteigung
Bestimme zunächst die Steigung der zu g(x):y=4x+3 senkrechten Geraden h mit der Formel.
m2=−m11
Setz den Wert ein.
m2=−41=−0,25
Die gesuchte Senkrechte hat also Steigung −0,25.
Bestimme nun den y-Achsenabschnitt der Senkrechten h mit dem gegebenen Punkt P(2∣−5), indem du den Punkt in die allgemeine Geradengleichung einsetzt.
h(xp):yp=m2xp+b
Setz die Werte ein.
−5=−0,25⋅2+b +0,5
Vereinfache und addiere 0,5.
−4,5=b⇒b=−4,5
Also lautet die Geradengleichung h(x):y=−0,25x−4,5.
Hast du eine Frage oder Feedback?
y=−32x+2
P(4∣6)
Für diese Aufgabe benötigst Du folgendes Grundwissen: Geradengleichung und Geradensteigung
Bestimme zunächst die Steigung der zu g(x):y=−32x+3 senkrechten Geraden h mit der Formel.
m2=−m11
Setz den Wert ein.
m2=−−321=23
Die gesuchte Senkrechte hat also Steigung 23.
Bestimme nun den y-Achsenabschnitt der Senkrechten h mit dem gegebenen Punkt P(4∣6), indem du den Punkt in die allgemeine Geradengleichung einsetzt.
h(xp):yp=m2xp+b
Setz die Werte ein.
6=23⋅4+b ∣−6
Vereinfache und subtrahiere 6.
0=b⇒b=0
Also lautet die Geradengleichung h(x):y=23x.
Hast du eine Frage oder Feedback?
y=31x−2
P(2∣5)
Für diese Aufgabe benötigst Du folgendes Grundwissen: Geradengleichung und Geradensteigung
Bestimme zunächst die Steigung der zu g(x):y=31x−2 senkrechten Geraden h mit der Formel.
m2=−m11
Setz den Wert ein.
m2=−311=−3
Die gesuchte Senkrechte hat also Steigung −3.
Bestimme nun den y-Achsenabschnitt der Senkrechten h mit dem gegebenen Punkt P(2∣5), indem du den Punkt in die allgemeine Geradengleichung einsetzt.
h(xp):yp=m2xp+b
Setz die Werte ein.
5=−3⋅2+b ∣+6
Vereinfache und addiere 6.
11=b⇒b=11
Also lautet die Geradengleichung h(x):y=−3x+11.
Hast du eine Frage oder Feedback?