Ordne die Graphen den richtigen Funktionen zu und gib jeweils eine kurze Begründung an. Zu zwei Funktionen gibt es keinen Graphen.
f(x)=−0.5x+1
g(x)=−2x2
h(x)=x2−x−1
i(x)=−3x6+6x5−2x2+1
k(x)=x3−x2+2.5
l(x)=1
m(x)=−x5+2x2
n(x)=x6+x4
Für diese Aufgabe benötigst Du folgendes Grundwissen: ganzrationale Funktionen
Eine ganzrationale Funktion ist eine Funktion, die sich aus Polynomen zusammensetzt.
Graph A
Graph A verläuft von links unten nach rechts unten.
Also muss
der höchste Exponent der zugehörigen Polynomfunktion gerade
und der zugehörige Koeffizient negativ sein.
In Frage kommen daher
Funktion g mit g(x)=−2x2 und
Funktion i mit i(x)=−3x6+6x5−2x2+1.
Funktion g scheidet aus, da ihr Graph eine Parabel sein müsste.
⇒ Ergebnis: Graph A gehört zur Funktion i.
Graph B
Graph B verläuft von links oben nach rechts oben.
Also muss
der höchste Exponent der zugehörigen Polynomfunktion gerade
und der zugehörige Koeffizient positiv sein.
In Frage kommen daher:
Funktion h mit h(x)=x2−x−1 und
Funktion n mit n(x)=x6+x4.
Um zwischen h und n zu unterscheiden, musst du also noch eine weitere Eigenschaft betrachten:
Der Graph von Funktion n wird achsensymmetrisch zur y-Achse sein (Der Funktionsterm von n enthält nur gerade Potenzen von x und damit ist f(−x)=f(x) ).
Der Graph von Funktion h wird keine Symmetrie zur y-Achse aufweisen.
Graph B ist nicht achsensymmetrisch zur y-Achse.
Daher
kommt Funktion n nicht in Frage.
⇒ Ergebnis: Graph B gehört zur Funktion h.
Graph C
Graph C verläuft von links unten nach rechts oben.
Also muss
der höchste Exponent der zugehörigen Polynomfunktion ungerade
und der zugehörige Koeffizient positiv sein.
In Frage kommt daher nur:
Funktion k mit k(x)=x3−x2+2.5
⇒ Ergebnis: Graph C gehört zur Funktion k.
Graph D
Graph D gehört zu einer konstanten Funktion.
In Frage kommt daher nur:
Funktion l mit l(x)=1
⇒ Ergebnis: Graph D gehört zur Funktion l.
Graph E
Graph E verläuft von links oben nach rechts unten.
Also muss
der höchste Exponent der zugehörigen Polynomfunktion ungerade
und der zugehörige Koeffizient negativ sein.
In Frage kommen daher:
Funktion f mit f(x)=−0.5x+1 und
Funktion m mit m(x)=−x5+2x2.
Funktion f scheidet aber aus, da sie eine lineare Funktion ist und deshalb ihr Graph eine Gerade sein müsste.
⇒ Ergebnis: Graph E gehört zur Funktion m.
Graph F
Graph F verläuft von links oben nach rechts unten.
Also muss
der höchste Exponent der zugehörigen Polynomfunktion ungerade
und der zugehörige Koeffizient negativ sein.
In Frage kämen daher wieder f und m. Aber du erkennst leicht:
Graph F ist eine Gerade.
Also muss die zu Graph F gehörende Funktion linear sein; das heißt, dass ihre Funktionsgleichung die Form y=mx+t haben muss.
In Frage kommt daher nur:
Funktion f mit f(x)=−0.5x+1
⇒ Ergebnis: Graph F gehört zur Funktion f.
Zusammenfassung:
Graph A: i Graph B: h Graph C: k Graph D: l Graph E: m Graph F: f
keinen passenden Graphen: g und n