Betrachte folgende Graphen.
Bestimme die Funktionsgleichungen von allen 4 Geraden.
Für diese Aufgabe benötigst Du folgendes Grundwissen: Geradengleichung
f(x):y=mfx+bf
Um die Geradengleichung von f zu bestimmen, liest du zuerst zwei Punkte aus dem Diagramm ab, die auf der Geraden f liegen. In diesem Fall ergibt sich zum Beispiel A(0∣3) und B(4∣2). Bestimme mit diesen die Steigung von f mit der Formel.
mf=xB−xAyB−yA
Setz die Werte ein.
mf=4−02−3=−41
Bestimme jetzt den y-Achsenabschnitt bf, indem du einen Punkt in die allgemeine Geradengleichung einsetzt, der auf f liegt, oder abliest, bei welchem Wert f die y-Achse schneidet.
f(x):y=mfx+bf
Setz zum Beispiel A ein.
3=−41⋅0+bf
Vereinfache.
3=bf⇒bf=3
Also lautet die Geradengleichung f(x)=−41⋅x+3.
g(x):y=mgx+bg
Um die Geradengleichung von g zu bestimmen, liest du zuerst zwei Punkte aus dem Diagramm ab, die auf der Geraden g liegen. In diesem Fall ergibt sich zum Beispiel C(−4∣0) und D(0∣1). Bestimme mit diesen die Steigung von g mit der Formel.
mg=xD−xCyD−yC
Setz die Werte ein.
mg=0−(−4)1−0=41
Bestimme jetzt den y-Achsenabschnitt bg, indem du einen Punkt in die allgemeine Geradengleichung einsetzt, der auf g liegt, oder abliest, bei welchem Wert g die y-Achse schneidet.
g(x):y=mgx+bg
Setz zum Beispiel D ein.
1=41⋅0+bg
Vereinfache.
1=bg⇒bg=1
Also lautet die Geradengleichung g(x)=41⋅x+1.
h(x):y=mhx+bh
Um die Geradengleichung von h zu bestimmen, liest du zuerst zwei Punkte aus dem Diagramm ab, die auf der Geraden h liegen. In diesem Fall ergibt sich zum Beispiel E(−1∣0) und A(0∣3). Bestimme mit diesen die Steigung von h mit der Formel.
mh=xA−xEyA−yE
Setz die Werte ein.
mh=0−(−1)3−0=3
Bestimme jetzt den y-Achsenabschnitt bh, indem du einen Punkt in die allgemeine Geradengleichung einsetzt, der auf h liegt, oder abliest, bei welchem Wert h die y-Achse schneidet.
h(x):y=mhx+bh
Setz zum Beispiel A ein.
3=3⋅0+bh
Vereinfache.
3=bh⇒bh=3
Also lautet die Geradengleichung h(x)=3⋅x+3.
i(x):y=mix+bi
Um die Geradengleichung von i zu bestimmen, liest du zuerst zwei Punkte aus dem Diagramm ab, die auf der Geraden i liegen. In diesem Fall ergibt sich zum Beispiel F(0∣−3) und S(6∣0). Bestimme mit diesen die Steigung von i mit der Formel.
mi=xS−xFyS−yF
Setz die Werte ein.
mi=6−00−(−3)=21
Bestimme jetzt den y-Achsenabschnitt bi, indem du einen Punkt in die allgemeine Geradengleichung einsetzt, der auf i liegt, oder abliest, bei welchem Wert i die y-Achse schneidet.
i(x):y=mix+bi
Setz zum Beispiel F ein.
−3=21⋅0+bi
Vereinfache.
−3=bi⇒bi=−3
Also lautet die Geradengleichung i(x)=21⋅x−3.
Hast du eine Frage oder Feedback?
Bestimme den Schnittpunkt von g und h , sowie die Nullstelle von f.
Für diese Aufgabe benötigst Du folgendes Grundwissen: Schnittpunkte zweier Funktionen berechnen
Schnittpunkt P(xp∣yp) von g und h
Um den Schnittpunkt von zwei Funktionen zu bestimmen, setzt du diese gleich und formst nach x um. Die Funktionsgleichungen lauten (Teilaufgabe a) g(x):y=41x+1 und h(x):y=3x+3.
41xP+1 = 3xP+3 −3xp−1 ↓ Subtrahiere 3xP und 1.
−411xP = 2 ÷(−411) ↓ Dividiere durch −411.
xp = −118 Setz nun −118 in die Geradengleichung von g oder h ein, um yP zu bestimmen.
h(xP):yP=3⋅xP+3
Setz xP ein.
yP=3⋅(−118)+3=119
Die Geraden g und h schneiden sich also bei P(−118119).
Die Nullstelle xNf von f bestimmst du, indem du die Funktionsgleichung f(x):y=−41x+3 mit 0 gleichsetzt und nach x umformst.
−41xNf+3 = 0 −3 −41xNf = −3 :41 xNf = 12 Die Nullstelle von f ist also 12.
Hast du eine Frage oder Feedback?
Berechne die beiden Schnittpunkte, die außerhalbdes Bildbereichs liegen.
Für diese Aufgabe benötigst Du folgendes Grundwissen: Schnittpunkte zweier Funktionen berechnen
Der Schnittpunkt von h und i und der Schnittpunkt von g und i liegen außerhalb des Bildbereichs.
Schnittpunkt T(xT∣yT) von h und i
Um den Schnittpunkt von zwei Funktionen zu bestimmen, setzt du diese gleich und formst nach x um. Die Funktionsgleichungen lauten (Teilaufgabe a) h(x):y=3x+3 und i(x):y=21x−3.
3xT+3 = 21xT−3 −21x−3 25xT = −6 :25 xT = −512 Setz nun −512 in die Geradengleichung von h oder i ein, um yT zu bestimmen.
h(xT):yT=3⋅xT+3
Setz xT ein.
yT=3⋅(−512)+3=−521
Die Geraden h und i schneiden sich also bei T(−512−521).
Schnittpunkt Q(xQ∣yQ) von g und i
Um den Schnittpunkt von zwei Funktionen zu bestimmen, setzt du diese gleich und formst nach x um. Die Funktionsgleichungen lauten (Teilaufgabe a) g(x):y=41x+1 und i(x):y=21x−3.
41xQ+1 = 21xQ−3 −21x−1 −41xQ = −4 :(−41) xQ=16
Setz nun 16 in die Geradengleichung von g oder i ein, um yQ zu bestimmen.
g(xQ):yQ=41⋅xQ+1
Setz xQ ein.
yQ=41⋅16+1=5
Die Geraden g und i schneiden sich also bei Q(16∣5).
Hast du eine Frage oder Feedback?
Wie viele Schnittpunkte gibt es höchstens bei vier Geraden, die jeweils nicht parallel sind?
Schnittpunkte kann es höchstens geben.Für diese Aufgabe benötigst Du folgendes Grundwissen: Gerade im Koordinatensystem
Es gibt insgesamt 6 Schnittpunkte, nämlich die folgenden:
f und g
f und h
f und i
g und h
g und i
h und i
Hast du eine Frage oder Feedback?