🎓 Ui, fast schon Prüfungszeit? Hier geht's zur Mathe-Prüfungsvorbereitung.
Springe zum Inhalt oder Footer
SerloDie freie Lernplattform

Stochastik, Teil B, Aufgabengruppe 1

🎓 Prüfungsbereich für Bayern

Weitere Bundesländer & Aufgaben:
Mathe- Prüfungen Startseite

Austausch & Hilfe:
Prüfungen-Discord

Die Aufgabenstellung findest du hier  zum Ausdrucken als PDF.

  1. 1

    An einem Samstagvormittag kommen nacheinander vier Familien zum Eingangsbereich eines Freizeitparks. Jede der vier Familien bezahlt an einer der sechs Kassen, wobei davon ausgegangen werden soll, dass jede Kasse mit der gleichen Wahrscheinlichkeit gewählt wird. Beschreiben Sie im Sachzusammenhang zwei Ereignisse A und B, deren Wahrscheinlichkeiten sich mit den folgenden Termen berechnen lassen. (3P)

    P(A)=654364P\left(A\right)=\dfrac{6\cdot5\cdot4\cdot3}{6^4}; P(B)=664P(B)=\dfrac{6}{6^4}

  2. 2

    Im Eingangsbereich des Freizeitparks können Bollerwagen ausgeliehen werden. Erfahrungsgemäß nutzen 1515% der Familien dieses Angebot. Die Zufallsgröße XX beschreibt die Anzahl der Bollerwagen, die von den ersten 200200 Familien, die an einem Tag den Freizeitpark betreten, entliehen werden. Im Folgenden wird davon ausgegangen, dass eine Familie höchstens einen Bollerwagen ausleiht und dass die Zufallsgröße XX binomialverteilt ist

    1. Bestimmen Sie die Wahrscheinlichkeit dafür, dass mindestens 2525 Bollerwagen ausgeliehen werden. (2P)

      %
    2. Bestimmen Sie die Wahrscheinlichkeit dafür, dass die fünfte Familie die erste ist, die einen Bollerwagen ausleiht. (2P)

      %
    3. Ermitteln Sie unter Zuhilfenahme des Tafelwerks den kleinsten symmetrisch um den Erwartungswert liegenden Bereich, in dem die Werte der Zufallsgröße XX mit einer Wahrscheinlichkeit von mindestens 7575% liegen. (5P)

  3. 3

    Der Freizeitpark veranstaltet ein Glücksspiel, bei dem Eintrittskarten für den Freizeitpark gewonnen werden können. Zu Beginn des Spiels wirft man einen Würfel, dessen Seiten mit den Zahlen 1 bis 6 durchnummeriert sind. Erzielt man dabei die Zahl 6, darf man anschließend einmal an einem Glücksrad mit drei Sektoren drehen (siehe schematische Abbildung unten). Wird Sektor KK erzielt, gewinnt man eine Kinderkarte im Wert von 2828 Euro, bei Sektor EE eine Erwachsenenkarte im Wert von 3636 Euro. Bei Sektor NN geht man leer aus. Der Mittelpunktswinkel des Sektors N beträgt 160°. Die Größen der Sektoren KK und EE sind so gewählt, dass pro Spiel der Gewinn im Mittel drei Euro beträgt. Bestimmen Sie die Größe der Mittelpunktswinkel der Sektoren KK und EE. (6P)

    Kreis mit drei Sektoren
  4. 4

    Am Ausgang des Freizeitparks gibt es einen Automaten, der auf Knopfdruck einen Anstecker mit einem lustigen Motiv bedruckt und anschließend ausgibt. Für den Druck wird aus nn verschiedenen Motiven eines zufällig ausgewählt, wobei jedes Motiv die gleiche Wahrscheinlichkeit hat. Ein Kind holt sich drei Anstecker aus dem Automaten.

    1. Bestimmen Sie für den Fall n=5n=5 die Wahrscheinlichkeit dafür, dass nicht alle drei Anstecker dasselbe Motiv haben. (2P)


    2. Begründen Sie, dass die Wahrscheinlichkeit dafür, dass sich drei verschiedene Motive auf den Ansteckern befinden, den Wert

      (n1)(n2)n2\dfrac{(n-1)\cdot(n-2)}{n^2} hat. (2P)

    3. Bestimmen Sie, wie groß n n mindestens sein muss, damit die Wahrscheinlichkeit dafür, dass sich drei verschiedene Motive auf den Ansteckern befinden, größer als 9090% ist. (3P)



Dieses Werk steht unter der freien Lizenz
CC BY-SA 4.0Was bedeutet das?