Springe zum Inhalt oder Footer
SerloDie freie Lernplattform

Geradenschnittpunkte berechnen.

Gegeben sind die Funktionsgleichungen zweier Geraden  g1(x)g_1(x)  und  g2(x)g_2\left(x\right). Berechnen Sie den Schnittpunkt beider Geraden und zeichnen Sie die Geraden in ein Koordinatensystem.

Gib den Schnittpunkt in das Eingabefeld ein: "S(1;3)" oder S(1|3)" zum Beispiel.

  1. g1(x)=12x+2          g2(x)=12x+4{\mathrm g}_1\left(\mathrm x\right)=\frac12\mathrm x+2\;\;\;\;\;{\mathrm g}_2\left(\mathrm x\right)=-\frac12\mathrm x+4


  2. g1(x)=2x1          g2(x)=2x+1{\mathrm g}_1\left(\mathrm x\right)=2\mathrm x-1\;\;\;\;\;{\mathrm g}_2\left(\mathrm x\right)=-2\mathrm x+1


  3. g1(x)=34x4          g2(x)=12x1{\mathrm g}_1\left(\mathrm x\right)=\frac34\mathrm x-4\;\;\;\;\;{\mathrm g}_2\left(\mathrm x\right)=-\frac12\mathrm x-1


  4. g1(x)=12x+2          g2(x)=12x+3{\mathrm g}_1\left(\mathrm x\right)=-\frac12\mathrm x+2\;\;\;\;\;{\mathrm g}_2\left(\mathrm x\right)=\frac12\mathrm x+3


  5. g1(x)=23x+2          g2(x)=12x+3{\mathrm g}_1\left(\mathrm x\right)=\frac23\mathrm x+2\;\;\;\;\;{\mathrm g}_2\left(\mathrm x\right)=\frac12\mathrm x+3


  6. g1(x)=34x+1          g2(x)=12x+2{\mathrm g}_1\left(\mathrm x\right)=\frac34\mathrm x+1\;\;\;\;\;{\mathrm g}_2\left(\mathrm x\right)=\frac12\mathrm x+2