Bilde die Ableitung folgender Funktionen mit Brüchen.
f(x)=1x3f(x)=\frac1{x^3}f(x)=x31
Für diese Aufgabe benötigst Du folgendes Grundwissen: Ableitung
f(x)=1x3=x−3f(x)=\frac{1}{x^3}=x^{-3}f(x)=x31=x−3
Bilde die erste Ableitung.
f′(x)=−3⋅x−4=−3x4f'(x)=-3\cdot x^{-4}=-\frac3{x^4}f′(x)=−3⋅x−4=−x43
Kommentiere hier 👇
f(x)=2x2+x−7f(x)=\frac2{x^2}+x^{-7}f(x)=x22+x−7
f(x)=2x2+x−7=2x−2+x−7f(x)=\frac2{x^2}+x^{-7}=2x^{-2}+x^{-7}f(x)=x22+x−7=2x−2+x−7
Hier wurde das Potenzgesetz angewendet, um die Funktion umzuformen. Leite nun ab:
f′(x)=−4x−3−7x−8=−4x3−7x8f'\left(x\right)=-4x^{-3}-7x^{-8}=-\frac4{x^3}-\frac7{x^8}f′(x)=−4x−3−7x−8=−x34−x87
Bitte melde dich an, um diese Funktion zu benutzen.