Gegeben sind gebrochen-rationale Funktionen der Form f(x)=x+ba+c.
1) Gib zu den gegebenen Parametern a, b und c die zugehörende gebrochen-rationale Funktionsgleichung an.
2) Beschreibe, wie der Graph deiner ermittelten Funktion aus dem Graphen der Funktion f(x)=x1 hervorgeht.
3) Gib die Gleichungen der waagerechten und senkrechten Asymptoten von deiner ermittelten Funktion an und erläutere sie.
Funktion f1(x): a=1, b=0 und c=2
Für diese Aufgabe benötigst Du folgendes Grundwissen: Asymptoten
Teilaufgabe 1:
Setze die gegebenen Werte der Parameter in die allgemeine Funktionsgleichung ein ⇒f1(x)=x+01+2=x1+2
Antwort: Die gesuchte Funktion hat die Funktionsgleichung:
Teilaufgabe 2:
Vergleiche den Graphen der Funktion f1(x), die Du erhalten hast, mit dem Graphen Gf der Funktion f(x)=x1.
Antwort: Der Parameter c=2 bewirkt eine Verschiebung von Gf um zwei Einheiten in positive y-Richtung, um den Graphen der Funktion f1(x) zu erhalten. Die Parameter a=1 und b=0 führen zu keiner Veränderung von Gf.
Teilaufgabe 3:
Die Funktion f(x)=x1 hat die waagerechte Asymptote y=0 und die senkrechte Asymptote x=0. Vergleiche nun, welche Veränderungen sich für die Funktion f1(x) ergeben haben.
Antwort: Durch die Verschiebung von Gf um zwei Einheiten in positive y-Richtung wurde auch die waagerechte Asymptote y=0 um zwei Einheiten in positive y-Richtung verschoben.
Die waagerechte Asymptote der Funktion f1(x) hat nun die Gleichung y=2. Die senkrechte Asymptote der Funktion f1(x) ist weiterhin x=0, da keine Verschiebung von Gf in x-Richtung erfolgt (b=0).
Die nebenstehende Abbildung ist nicht Teil der Aufgabenstellung. Sie dient nur zur Veranschaulichung.
Grün gestrichelt dargestellt sind die waagerechte Asymptote y=2 und die senkrechte Asymptote x=0.
Hast du eine Frage oder Feedback?
Funktion f2(x): a=1, b=0 und c=−3
Für diese Aufgabe benötigst Du folgendes Grundwissen: Asymptoten
Teilaufgabe 1:
Setze die gegebenen Werte der Parameter in die allgemeine Funktionsgleichung ein ⇒f2(x)=x+01−3=x1−3
Antwort: Die gesuchte Funktion hat die Funktionsgleichung:
Teilaufgabe 2:
Vergleiche den Graphen der Funktion f2(x), die Du erhalten hast, mit dem Graphen Gf der Funktion f(x)=x1.
Antwort: Der Parameter c=−3 bewirkt eine Verschiebung von Gf um drei Einheiten in negative y-Richtung, um den Graphen der Funktion f2(x) zu erhalten. Die Parameter a=1 und b=0 führen zu keiner Veränderung von Gf.
Teilaufgabe 3:
Die Funktion f(x)=x1 hat die waagerechte Asymptote y=0 und die senkrechte Asymptote x=0. Vergleiche nun, welche Veränderungen sich für die Funktion f2(x) ergeben haben.
Antwort: Durch die Verschiebung von Gf um drei Einheiten in negative y-Richtung wurde auch die waagerechte Asymptote y=0 um drei Einheiten in negative y-Richtung verschoben. Die waagerechte Asymptote der Funktion f2(x) hat nun die Gleichung y=−3 . Die senkrechte Asymptote der Funktion f2(x) ist weiterhin x=0, da keine Verschiebung von Gf in x-Richtung erfolgt (b=0).
Die nebenstehende Abbildung ist nicht Teil der Aufgabenstellung. Sie dient nur zur Veranschaulichung.
Grün gestrichelt dargestellt sind die waagerechte Asymptote y=−3 und die senkrechte Asymptote x=0.
Hast du eine Frage oder Feedback?
Funktion f3(x): a=1, b=1 und c=0
Für diese Aufgabe benötigst Du folgendes Grundwissen: Asymptoten
Teilaufgabe 1:
Setze die gegebenen Werte der Parameter in die allgemeine Funktionsgleichung ein ⇒f3(x)=x+11+0=x+11
Antwort: Die gesuchte Funktion hat die Funktionsgleichung:
Teilaufgabe 2:
Vergleiche den Graphen der Funktion f3(x), die Du erhalten hast, mit dem Graphen Gf der Funktion f(x)=x1.
Antwort: Der Parameter b=1 bewirkt eine Verschiebung von Gf um eine Einheit in negative x-Richtung, um den Graphen der Funktion f3(x) zu erhalten. Die Parameter a=1 und c=0 führen zu keiner Veränderung von Gf.
Teilaufgabe 3:
Die Funktion f(x)=x1 hat die waagerechte Asymptote y=0 und die senkrechte Asymptote x=0. Vergleiche nun, welche Veränderungen sich für die Funktion f3(x) ergeben haben.
Antwort: Durch die Verschiebung von Gf um eine Einheit in negative x-Richtung wurde auch die senkrechte Asymptote x=0 um eine Einheit in negative x-Richtung verschoben. Die senkrechte Asymptote der Funktion f3(x) hat nun die Gleichung x=−1 . Die waagerechte Asymptote der Funktion f3(x) ist weiterhin y=0, da keine Verschiebung von Gf in y-Richtung erfolgt (c=0).
Die nebenstehende Abbildung ist nicht Teil der Aufgabenstellung. Sie dient nur zur Veranschaulichung.
Grün gestrichelt dargestellt sind die waagerechte Asymptote y=0 und die senkrechte Asymptote x=−1.
Hast du eine Frage oder Feedback?
Funktion f4(x): a=1, b=−2 und c=0
Für diese Aufgabe benötigst Du folgendes Grundwissen: Asymptoten
Teilaufgabe 1
Setze die gegebenen Werte der Parameter in die allgemeine Funktionsgleichung ein ⇒
Antwort: Die gesuchte Funktion hat die Funktionsgleichung:
Teilaufgabe 2
Vergleiche den Graphen der Funktion f4(x), die Du erhalten hast, mit dem Graphen Gfder Funktion f(x)=x1.
Antwort: Der Parameter b=−2 bewirkt eine Verschiebung von Gf um zwei Einheiten in positive x-Richtung, um den Graphen der Funktion f4(x) zu erhalten. Die Parameter a=1 und c=0 führen zu keiner Veränderung von Gf.
Teilaufgabe 3
Die Funktion f(x)=x1hat die waagerechte Asymptote y=0 und die senkrechte Asymptote x=0. Vergleiche nun, welche Veränderungen sich für die Funktion f4(x) ergeben haben.
Antwort: Durch die Verschiebung von Gf um zwei Einheiten in positive x-Richtung wurde auch die senkrechte Asymptote x=0 um zwei Einheiten in positive x-Richtung verschoben. Die senkrechte Asymptote der Funktion f4(x) hat nun die Gleichung x=2. Die waagerechte Asymptote der Funktion f4(x) ist weiterhin y=0, da keine Verschiebung von Gf in y-Richtung erfolgt (c=0).
Die nebenstehende Abbildung ist nicht Teil der Aufgabenstellung. Sie dient nur zur Veranschaulichung.
Grün gestrichelt dargestellt sind die waagerechte Asymptote y=0 und die senkrechte Asymptote x=2.
Hast du eine Frage oder Feedback?