Aufgaben zum exponentiellen Wachstum
- 1
Bei einem radioaktiven Stoff zerfällt jedes Jahr 10% der noch vorhandenen Masse. Berechne, wie viel nach 10 Jahren noch vorhanden ist.
- 2
Derzeit gibt es kein politisches System auf der Erde, das nicht auf Wirtschaftswachstum setzt. Wachstum gelten als wünschenswert und maßvoll: also jedes Jahr mehr im Vergleich zum Vorjahr. Um wie viel Prozent wäre also bei diesem Wachstum die Wirtschaft nach…
… 2 Jahren gewachsen?
… 10 Jahren gewachsen?
… 50 Jahren gewachsen?
- 3
Hans eröffnet am 1. Januar ein Konto und zahlt darauf ein.
Er erhält jährlich Zinsen, die er am Ende des Jahres jeweils auf das Konto gutschreiben lässt
Wie lautet der Kontostand nach 1, 2, 5 bzw. 10 Jahren?
Wie lange müsste Hans warten, damit sich sein Anfangskapital von verdoppelt hat?
- 4
Bakterien vermehren sich durch Teilung, wobei sich eine Bakterienzelle durchschnittlich alle 10 Minuten teilt. Zum Zeitpunkt sei genau eine Bakterienzelle vorhanden.
Wie viele Bakterien sind dann nach 1 Stunde, 2 Stunden, 6 Stunden, 12 Stunden bzw. 24 Stunden vorhanden?
Finde eine Formel für die Anzahl der Bakterien nach der Zeit .
Eine Bakterienzelle hat ein Volumen von ca. . Wie lange dauert es, bis die Bakterienkultur ein Volumen von bzw. einnimmt? Beurteile dein Ergebnis kritisch.
- 5
Ein Taucher interessiert sich wegen Unterwasseraufnahmen dafür, welche Helligkeit in verschiedenen Tiefen herrscht.
Messungen in einem bestimmten (recht trüben) See ergeben, dass die Helligkeit pro Meter Wassertiefe um ca. 17% abnimmt.
Für diese Aufgabe musst du dich mit exponentiellem Wachstum auskennen
allg. Formel
Abnahmefaktor
Anfangswert
Exponent= in Metern
in Prozent
Wie groß ist die Helligkeit in 1m, 2m, 5m bzw. 10m Tiefe, verglichen mit der Helligkeit an der Wasseroberfläche?
Beschreiben sie die Helligkeit H als Funktion der Wassertiefe x als Bruchteil der Helligkeit an der Wasseroberfläche.
In welcher Tiefe beträgt die Helligkeit weniger als ?
- 6
Beim Reaktorunglück von Tschernobyl wurde eine Menge von etwa radioaktiven Jod 131 freigesetzt.
Dieses Jod 131 hat eine sogenannte Halbwertszeit von 8,0 Tagen, d.h. in jeweils 8,0 Tagen halbiert sich die Menge des noch vorhandenen radioaktiven Materials Jod 131.
Allg. Formel:
Anfangswert a =
Zeit in Tagen
Wie kann man die Menge des radioaktiven Jods 131 als Funktion der Zeit angeben?
Welcher Prozentsatz der ursprünglich vorhandenen Menge war nach einem Tag bzw. nach 30 Tagen noch vorhanden?
Wie lange musste man etwa warten, bis von den 400g Jod 131 nur noch 1 Milligramm vorhanden war?
- 7
Bierschaumzerfall
Bei einer schlecht eingeschenkten Maß Bier beträgt die Schaumhöhe anfangs . Um das Bier einigermaßen trinken zu können, wartet der Gast eine gewisse Zeit. Nach 3 Minuten ist die Schaumhöhe auf die Hälfte zurückgegangen.
Stelle die Zerfallsgleichung für den Bierschaumzerfall auf.
Berechne, wann die Schaumhöhe auf zurückgegangen ist.
Bei einem anderen Gast beträgt die Schaumhöhe nach drei Minuten noch . Wie war die Schaumhöhe nach dem Einschenken?
Mache plausibel, wann der Zerfall am stärksten ist.
Dieses Werk steht unter der freien Lizenz
CC BY-SA 4.0 → Was bedeutet das?