13Scheitelform
Die Darstellung einer quadratischen Funktion in folgender Form heißt Scheitelform. Man kann den Scheitelpunkt ohne weitere Rechnung ablesen:
Sollen die Nullstellen der obigen quadratischen Funktion berechnet werden, dann musst du folgende Gleichung lösen:
Quadratische Gleichungen in der Scheitelform lösen wir geschickt durch Rückwärtsrechnen. Dabei kehren wir die Reihenfolge der Vorfahrtsregeln um.
↓ | Bringe auf die andere Seite. | ||
↓ | Teile durch 2. | ||
↓ | Ziehe auf beiden Seiten die Wurzel. Dabei muss beachtet werden, dass die Ausdrücke auf beiden Seiten stets positiv sind. | ||
↓ | Beim Wurzelziehen den Betrag nicht vergessen | ||
Löse den Betrag auf. Dazu werden zwei Fälle betrachtet.
Es gibt zwei Zahlen, deren Betrag gleich ist: und .
Fall 1:
Fall 2:
Antwort: Die quadratische Funktion hat die beiden Nullstellen und .