Potenzen

Das Potenzieren ist eine verkürzte Schreibweise für das mehrmalige Multiplizieren einer Zahl mit sich selbst.

Beispiel: Man schreibt 2223 Faktoren\underbrace{2\cdot2\cdot2}_{3~Faktoren} als 232^3.

Der Exponent bzw. die Hochzahl, in diesem Beispiel die 3, beschreibt, wie oft eine Zahl mit sich selbst multipliziert wird.

Generell hat jede Zahl ohne Exponenten den Exponenten 11.

Es gilt: x=x1x=x^1.

Der Exponent wird in diesem Fall meist weggelassen.

Beispiel: 31=33^1=3

Potenziert man eine beliebige Zahl xx mit 00, so erhält man immer x0=1x^0=1. Ausnahme: in manchen Schulbücher ist „000^0“ nicht definiert. Es schadet aber nicht, wenn wir 00=10^0=1 setzen.

Wichtig: 00=10^0=1 ist nicht das Ergebnis einer Rechnung, sondern eine Vereinbarung.

Warum ist das so?

Wenn du Polynome mit Hilfe von Summenzeichen schreiben willst, hast du zum Beispiel für ein Polynom dritten Grades

Dabei steht für n=0n=0 der Term a0x0a_0x^0 da. Das soll auch für x=0x=0 den Wert a0a_0 haben, daher ist es sinnvoll, auch 00=10^0=1 zu setzen.

Basis und Exponent

Die Zahl, welche mit sich selbst multipliziert werden soll, nennt man Basis, die Anzahl Exponent, beides zusammen ist die Potenz und das Ergebnis dieser Rechnung ist der Wert der Potenz.

Potenzen mit negativer Basis

Wird eine negative Zahl potenziert, hängt das Vorzeichen des Ergebnisses davon ab, ob der Exponent eine gerade oder ungerade Zahl ist. Ist er gerade, ist das Ergebnis positiv, ist er ungerade, bleibt die Potenz negativ.

Beispiel:

(2)2=(2)(2) = +4 \left(-2\right)^2=\left(-2\right)\cdot\left(-2\right)\ =\ +4\

(2)3=(2)(2)(2) = 8\left(-2\right)^3=\left(-2\right)\cdot\left(-2\right)\cdot\left(-2\right)\ =\ -8

Warum ist das so?

Rechnen wir (a)b(-a)^b aus:

Der Term aba^b ist positiv, weil die Zahl aa größer als Null ist. Beim Term (1)b(-1)^b können wir verwenden, dass „Minus mal Minus Plus ergibt“. Es ist:

(1)1=(1)=1(-1)^1 = (-1) = -1

(1)2=(1)(1)=+1(-1)^2 = (-1)\cdot (-1) = +1

(1)3=(1)(1)(1)=1(-1)^3 = (-1)\cdot (-1)\cdot (-1) = -1

(1)4=(1)(1)(1)(1)=+1(-1)^4 = (-1)\cdot (-1)\cdot (-1)\cdot (-1) = +1

\vdots

Man sieht:

(1)gerade Zahl=1(-1)^{\text{gerade Zahl}} =1

(1)ungerade Zahl=1(-1)^{\text{ungerade Zahl}} = -1

Wenn also bb eine gerade Zahl ist, ist (1)b(-1)^b positiv und wenn bb eine ungerade Zahl ist, ist (1)b(-1)^b negativ. Somit ist auch (1)bab=(a)b(-1)^b\cdot a^b=(-a)^b positiv, wenn bb gerade ist, und negativ, wenn bb ungerade ist.

Potenzen mit negativem Exponenten

Wie kann man aka^{-k} interpretieren?

Warum ist das so?

In der nebenstehenden Grafik kann man folgendes sehen: Wenn der Exponent um eins kleiner wird, muss man das Ergebnis durch die Basis teilen. Das kennst du schon bei positiven Exponenten und kannst das auch bei negativen Exponenten weitermachen.

Hier siehst du das Ganze nochmal allgemein für aa. Am Ende steht dann die allgemeine Formel von oben.

Beispiele:

21=122^{-1}=\dfrac12

42=142=1164^{-2}=\dfrac1{4^2}=\dfrac1{16}

325=3125=352\frac{3}{25}=3\cdot\frac{1}{25}=3\cdot5^{-2}

Rationale Exponenten

Zahlen, die man mit einer rationalen Zahl (also einem Bruch) potenziert, kann man als Wurzel identifizieren:

Damit gilt umgekehrt für die Standard-Wurzel:

Beispiele:

Rechnen mit Potenzen

Im Artikel Potenzgesetze kannst du nachlesen, wie man mit Potenzen rechnet und welche Potenzgesetze es gibt.

Übungsaufgaben

Inhalt wird geladen…

Weitere Aufgaben zum Thema findest du im folgenden Aufgabenordner:
Aufgaben zu einfachen Potenzen

Du hast noch nicht genug vom Thema?

Hier findest du noch weitere passende Inhalte zum Thema:

Artikel

Kurse

Videos


Dieses Werk steht unter der freien Lizenz
CC BY-SA 4.0.Was bedeutet das?