🎓 Ui, fast schon Prüfungszeit? Hier geht's zur Mathe-Prüfungsvorbereitung.
Springe zum Inhalt oder Footer
SerloDie freie Lernplattform

Stochastik, Teil B, Aufgabengruppe 1

🎓 Prüfungsbereich für Bayern

Weitere Bundesländer & Aufgaben:
Mathe- Prüfungen Startseite

Austausch & Hilfe:
Prüfungen-Discord

  1. 1

    Im Dezember 2021 wurden in Norwegen rund 14 000 Pkw neu zugelassen. In einer vereinfachten Übersicht sind die Anteile der verschiedenen Antriebsarten an diesen Neuzulassungen dargestellt.

    Tabelle

    Für eine Untersuchung werden aus diesen Neuzulassungen 200 Fahrzeuge zufällig ausgewählt und deren Besitzer nach den Gründen für die Wahl der Antriebsart befragt. Da aus einer großen Anzahl von Fahrzeugen nur verhältnismäßig wenige ausgewählt werden, wird das Urnenmodell "Ziehen mit Zurücklegen" ausgewählt.

    1. Bestimmen Sie die Wahrscheinlichkeiten folgender Ereignisse:

      D: "Unter den ausgewählten Pkw befinden sich sieben oder acht Verbrenner mit Dieselmotor".

      E: "Unter den ausgewählten Pkw befinden sich mehr als 135 mit rein elektrischem Antrieb". (4 P)

    2. Geben Sie im Sachzusammenhang ein Ereignis an, dessen Wahrscheinlichkeit mit dem Term

      k=025(200k)0,1k(10,1)200k\displaystyle\sum_{k=0}^{25}\begin{pmatrix} 200 \\ k \end{pmatrix}\cdot 0{,}1^k\cdot (1-0{,}1)^{200-k}

      berechnet werden kann. (3 P)

    3. Die Zufallsgröße X beschreibt die Anzahl der Pkw mit Elektromotor unter den ausgewählten Fahrzeugen. Berechnen Sie den Erwartungswert und die Standardabweichung von X. (2 P)

    4. Für einen bestimmten Wert nn\in {1;2;3;...1;2;3;...} werden für p]0;1[p\in ]0;1[ die binomialverteilten Zufallsgrößen ZpZ_p mit den Parametern nn und pp betrachtet. Weisen Sie nach, dass unter diesen Zufallsgrößen diejenige mit p=0,5p=0{,}5 die größte Varianz hat. (3 P)

    5. Aus den neu zugelassenen Pkw mit Elektromotor werden 4040 Fahrzeuge zufällig ausgewählt. Bestimmen Sie die Wahrscheinlichkeit dafür, dass sich darunter genau zehn Plug-in-Hybriden befinden. (3 P)

      %
  2. 2

    In Deutschland waren zu Beginn des Jahres 2021 etwa 320 000 Pkw mit rein elektrischem Antrieb und 280 000 Plug-in-Hybride zugelassen, also insgesamt etwa 600 000 Pkw mit Elektromotor. Der Anteil der Pkw mit Elektromotor am Gesamtbestand aller in Deutschland zugelassenen Pkw betrug rund 1,2  %1{,}2\;\%. Bestimmen Sie die Anzahl der Pkw, die aus diesem Gesamtbestand mindestens zufällig ausgewählt werden müssen, damit mit einer Wahrscheinlichkeit von mehr als 97  %97\;\% mindesten ein Pkw mit rein elektrischem Antrieb darunter ist. (5 P)

    PKWs
  3. 3

    Ein Autozulieferer hat zwei Betriebsstandorte A und B. Die Zahl der Beschäftigten am Standort A ist viermal so groß wie am Standort B. 60  %60\;\% aller Beschäftigten des Autozulieferers haben sich für den Kauf eines Jobtickets entschieden, mit dem die Firma die Nutzung des öffentlichen Personennahverkehrs für den Weg zur Arbeit fördert.

    1. Bestimmen Sie unter der Annahme, dass der Anteil der Beschäftigten mit einem Jobticket an beiden Standorten gleich ist, die Wahrscheinlichkeit dafür, dass ein zufällig ausgewählter Beschäftigter des Autozulieferers am Standort B arbeitet und kein Jobticket besitzt. (2 P)

      %
    2. Tatsächlich ist der Anteil der Beschäftigten mit einem Jobticket an beiden Standorten unterschiedlich; am Standort B besitzt nur die Hälfte der Beschäftigten ein Jobticket. Berechnen Sie die Wahrscheinlichkeit dafür, dass ein zufällig ausgewählter Beschäftigter des Autozulieferers, der ein Jobticket besitzt, am Standort A arbeitet. (3 P)

      %

Dieses Werk steht unter der freien Lizenz
CC BY-SA 4.0Was bedeutet das?