Aufgaben zu Potenzfunktionen
- 1
Betrachte die Graphen der Potenzfunktionen im . Quadranten. Für - Werte zwischen und liegt der Graph einer Potenzfunktion höheren Grades unterhalb des Graphen einer Potenzfunktion niederen Grades. Für ist das genau umgekehrt.
Begründe dieses Verhalten.
- 2
Der Graph der Potenzfunktion 3.Grades soll um 2 Einheiten nach links und anschließend um 3 Einheiten nach oben verschoben werden. Gib die Funktionsgleichung für den verschobenen Graphen an.
- 3
Bestimme die Symmetrie und den Verlauf der Graphen folgender Potenzfunktionen und gib jeweils die Wertemenge und den Grad an.
- 4
Bestimme den Grad folgender Potenzfunktionen, mache eine Aussage über das Symmetrieverhalten, den Verlauf des Graphen und die Wertemenge. Zeichne die Graphen jeweils in ein Koordinatensystem.
- 5
Der Graph der Potenzfunktion vierten Grades soll um 3 Einheiten nach rechts verschoben und anschließend um den Faktor 2 gestreckt werden.
a. Gib die Funktionsgleichung für den verschobenen Graphen an.
b. Weise nach, dass der Graph weder zur y-Achse noch zum Ursprung symmetrisch ist.
Dieses Werk steht unter der freien Lizenz
CC BY-SA 4.0 → Was bedeutet das?