Welche Fehler wurden hier gemacht? Verbessere!

%%\frac67:\frac{21}2=\frac61:\frac32=6\cdot\frac23=4%%

%%\frac67:\frac{21}2=\frac61:\frac32=6\cdot\frac23=4%%

Ist falsch, da erst nach dem Multiplizieren mit dem Kehrwert gekürzt werden darf. Richtig ist also:

%%\frac67:\frac{21}2=%%

%%=\frac67\cdot\frac2{21}=%%

%%=\frac{12}{147}=%%

Kürzen mit 3.

%%=\frac4{49}%%

%%\frac{6+8}{24-6}=\frac{1+8}{24-1}=\frac{1+1}{3-1}=\frac22=1%%

%%\frac{6+8}{24-6}=\frac{1+8}{24-1}=\frac{1+1}{3-1}=\frac22=1%%

Die Rechnung ist falsch, da aus Summen oder Differenzen nicht gekürzt oder erweitert werden darf. Die Summe bzw. Differenz muss zuerst berechnet werden. Richtig ist also:

%%\frac{6+8}{24-6}=%%

Einzelne Berechnung von Zähler und Nenner.

%%=\frac{14}{18}=%%

Kürzen mit 2.

%%=\frac79%%

%%8\frac16\cdot4=8\frac46=8\frac23%%

%%8\frac16\cdot4=8\frac46=8\frac23%%

Die Rechnung ist falsch, da die Gemischter Bruch erst in einen  unechten Bruch umgewandelt werden muss, bevor multipliziert werden darf. Oder man wendet das Distributivgesetz an, indem man sich bewusst macht, dass %%8\frac16%% eine Summe ist. Richtig ist also:

1)

%%8\frac16\cdot4=%%

Umwandeln in einen unechten Bruch .

%%=\frac{49}6\cdot4=%%

Kürzen mit 2.

%%=\frac{49}3\cdot2=%%

%%=\frac{98}3=%%

Umwandeln in einen gemischten Bruch.

%%=32\frac23%%


2)

%%8\frac16\cdot4=%%

Schreiben des gemischten Bruch als Summe.

%%=\left(8+\frac16\right)\cdot4=%%

Anwenden des Distributivgesetzes .

%%=32+\frac46=%%

Kürzen mit 2.

%%=32\frac23%%