Aufgaben

Gliedere den Term %%\left(153+12\right)-\left[53-\left(18+33\right)\right]%% und berechne seinen Wert.

Beachte die 2. Klammer!

Beachte die Klammern!

Rechne nochmal nach!

Richtig!

Addition und Subtraktion

Alles, was du zu dieser Aufgabe wissen musst, findest du im Artikel zu Addition und Subtraktion.

Rechne die innerste Klammer zuerst:

%%\left(153+12\right)-\left[53-\left(18+33\right)\right]%%

In den inneren Klammern addieren.

%%=165-\left(53-51\right)%%

Die Klammer subtrahieren.

%%=165-2%%

%%=163%%

Mache zunächst eine Überschlagsrechnung. Führe dann die Rechnung aus und vergleiche die Ergebnisse

Zu text-exercise-group 10719:
LisaSchwa 2017-07-12 08:48:27+0200
Die Aufgabenstellung zur 2. Aufgabe ist in a. und b. geteilt. Ist das beabsichtigt? Verwirrt vielleicht.
metzgaria 2017-07-17 13:23:52+0200
wird geändert!

Welcher Fehler wurde bei folgender Rechnung gemacht?

%%"123+\left(321\cdot213-132\right)=321\cdot213=68373-132=68241+123=68364"%%

Das Endergebnis ist zwar richtig, aber bei den Zwischenschritten wurde vergessen, den Rest mit abzuschreiben.

Denn %%68373-132%% beispielsweise ist nicht gleich %%68364%%.

Richtig wäre also:

%%123+\left(321\cdot213-132\right)=%%

In der Klammer ausmultiplizieren.

%%=123+\left(68373-132\right)=%%

Klammer ausrechnen.

%%=123+68241=%%

%%=68364%%

Beantworte folgende Frage.

Welche Zahl muss man von 97531 subtrahieren, um 1357 zu erhalten?

Rechne nochmal nach!

Versuchs nochmal anders!

Richtig!

Ansatz:

%%97531-\mathrm x=1357%%

Ein Beispiel mit kleineren Zahlen zur Erläuterung der Vorgehensweise:

%%3-\mathrm x=1%%

Stelle nach %%x%% um.

%%3-1=\mathrm x%%

%%\mathrm x=2%%

2 ist somit das richtige Ergebnis des Beispiels.

%%\rightarrow\;97531-1357=\mathrm x%%

%%\begin{array}{l}\;\;\;9\;7\;5\;3\;1\\\frac{-\;1\;3_1\;5_1\;7}{\;\;9\;6\;1\;7\;4}\end{array}%%

%%\mathrm x=96174%%

Überprüfung:

%%97531-96174=1357%%

96174 ist somit das richtige Ergebnis.

Von welcher Zahl muss man 2468 subtrahieren, um 642 zu erhalten?

Probier's nochmal anders!

Rechne genauer!

Richtig!

Ansatz:

%%\mathrm x-2468=642%%

Ein einführendes Beispiel mit kleineren Zahlen zum Einüben der Vorgehensweise:

%%\mathrm x-2=1%%

Stelle nach %%x%% um.

%%\mathrm x=1+2%%

%%\mathrm x=3%%

Überprüfung:

%%3-2=1%%

3 ist somit das richtige Ergebnis.

%%\rightarrow\;\mathrm x=642+2468%%

%%\begin{array}{l}\underline{\begin{array}{cccc}\;\;&\;&6&4&2\\+&2_1&4_1&6_1&8\end{array}}\\\begin{array}{cccc}\;\;\;&3\;\;&1\;&1\;&0\end{array}\end{array}%%

%%\mathrm x=3110%%

%%3110-2468=642%%

3110 ist somit das richtige Ergebnis.

Berechne

%%\left[99\cdot\left(3\cdot9-7\right)+0\cdot3:51\right]:\left(99-9\cdot11\right)%%

Beachte Punkt vor Strich!

Beachte die Klammern und Punkt-vor-Strich!

Super gemacht!

%%\left[99\cdot\left(3\cdot9-7\right)+0\cdot3:51\right]:\left(99-9\cdot11\right)=%%

Erst Multiplikationen innerhalb der Klammern berechnen.

%%=\left[99\cdot\left(27-7\right)+0\right]:\left(99-99\right)=%%

Klammern berechnen.

%%=\left[99\cdot20+0\right]:0%%

%%\;\;\;\;\rightarrow\;\;\;%% Die Gleichung ist nicht lösbar, da die Division durch 0 nicht definiert ist, also durch 0 nicht geteilt werden darf.

Der Osterhase hat 10.000 Eier versteckt. Bisher wurden 2.977 gefunden. Wie viele Eier sind noch verborgen?

Aus der Aufgabenstellung lässt sich folgende Gleichung gewinnen:

%%10.000-x=2.977%%, wobei %%x%% die Anzahl der noch verborgenen Eier bezeichnet.

Ein Beispiel mit kleineren Zahlen zur Vorstellung der Vorgehensweise:

%%1+x=3%%

Stelle nach %%x%% um.

%%x=3-1=2%%

%%1+\boxed2=3%%

Die Gleichung ist richtig.

%%10.000-x=2.977%%

Forme nach %%x%% um.

%%x=10.000-2.977%%

%%x=7.023%%

Probe: 7023 in Anfangsgleichung einsetzen.

%%2.977+\boxed{7.023}=10.000%%

Gleichung ist richtig.

%%\Rightarrow Es\;sind\;also\;noch\;7.023\;vom\;Osterhasen\;versteckte\;Eier\;verborgen.%%

  1. Berechne den Wert des Terms!

  2. Wie verändert sich der Wert des Terms, wenn alle Zahlen um 2 vergrößert werden?

(Die Auswählmöglichkeiten beziehen sich auf die 1.Augabe)

Führe die Aufgaben aus für die folgenden Terme:

%%65432-\left[\left(2264-675\right)-\left(123+432+1\right)\right]-10%%

Rechne nochmal nach!

Beachte die Klammern!

Rechne nochmal nach!

Super!

Teilaufgabe 1

%%65432-\left[\left(2264-675\right)-\left(123+432+1\right)\right]-10=%%

Subtrahiere und addiere in den inneren Klammern.

%%=65432-\left[1589-556\right]-10=%%

Subtrahiere in der Klammer.

%%=65432-1033-10=%%

%%=64389%%

 

Teilaufgabe 2

Durch Anwendung des Kommutativ- und Assoziativgesetzes ist sichergestellt, dass der Zuwachs durch die Vergrößerug aller Zahlen bestimmt werden kann, indem einfach für alle Zahlen eine 2 eingesetzt wird. Dabei wird berücksichtigt, dass weder Multiplikationen noch Divisionen vorkommen.

%%2-\left[\left(2-2\right)-\left(2+2+2\right)\right]-2=%%

Subtrahiere und addiere in den inneren Klammern.

%%=2-\left[0-6\right]-2=%%

Subtrahiere in der Klammer.

%%=2+6-2=%%

 

%%=6%%

 

%%\;\;\Rightarrow\;\;Das\;Ergebnis\;ist\;um\;6\;größer.%%

%%5763+\left[\left(1342-43\right)-\left(234+32+1\right)-10\right]%%

Schau genau!

Rechne nochmal nach!

Beachte die Klammern!

Richtig!

Teilaufgabe 1

%%5763+\left[\left(1342-43\right)-\left(234+32+1\right)-10\right]=%%

Subtrahiere und addiere in den inneren Klammern.

%%=5763+\left[1299-267-10\right]=%%

Subtrahiere in der Klammer.

%%=5763+1022=%%

%%=6785%%

 

Teilaufgabe 2

Durch Anwendung des Kommutativ- und Assoziativgesetzes ist sichergestellt, dass der Zuwachs durch die Vergrößerug aller Zahlen bestimmt werden kann, indem einfach für alle Zahlen eine 2 eingesetzt wird. Dabei wird berücksichtigt, dass weder Multiplikationen noch Divisionen vorkommen.

%%2+\left[\left(2-2\right)-\left(2+2+2\right)-2\right]=%%

Subtrahiere und addiere in den inneren Klammern.

%%=2+\left(0-6-2\right)=%%

Subtrahiere in der Klammer.

%%=2-8=%%

%%=-6%%

 

%%\;\;\Rightarrow\;\;Das\;Ergebnis\;ist\;um\;6\;kleiner.%%

%%13513-\left[\left(555-132\right)-\left(400+1962+4\right)+15\right]%%

Rechne nochmal nach!

Hast du Rechenzeichen verwechselt?

Beachte die Klammern!

Richtig!

Teilaufgabe 1

%%13513-\left[\left(555-132\right)-\left(400+1962+4\right)+15\right]=%%

Subtrahiere und addiere in den inneren Klammern.

%%=13513-\left[423-2366+15\right]=%%

Subtrahiere in der Klammer.

%%=13513+1928=%%

%%=15441%%

Teilaufgabe 2

Durch Anwendung des Kommutativ- und Assoziativgesetzes ist sichergestellt, dass der Zuwachs durch die Vergrößerug aller Zahlen bestimmt werden kann, indem einfach für alle Zahlen eine 2 eingesetzt wird. Dabei wird berücksichtigt, dass weder Multiplikationen noch Divisionen vorkommen.

%%2-\left[\left(2-2\right)-\left(2+2+2\right)+2\right]=%%

Subtrahiere und addiere in den inneren Klammern.

%%=2-\left[0-6+2\right]=%%

Subtrahiere in der Klammer.

%%=2+4=%%

%%=6%%

 

%%\;\;\Rightarrow\;\;Das\;Ergebnis\;ist\;um\;6\;größer.%%

Für die folgenden Terme befolge diese Arbeitsanweisungen:

  1. Mache jeweils eine Überschlagsrechnung!

  2. Berechne den Wert des Terms!

  3. Überlege, ob man Klammern weglassen kann, ohne den Wert des Terms zu ändern!

%%\left[4531-\left(2143-1824\right)\right]-3213%%

Teilaufgabe 1

%%\left[4531-\left(2143-1824\right)\right]-3213%%

Überschlage und rechne die Klammern aus.

%%\left[4500-\left(2100-1800\right)\right]-3200=%%

%%\left[4500-300\right]-3200=%%

%%=4200-3200%%

%%=1000%%

 

Teilaufgabe 2

%%\left[4531-\left(2143-1824\right)\right]-3213=%%

Löse die Klammern auf.

%%=\left[4531-319\right]-3213%%

%%=4212-3213%%

%%=999%%

 

Teilaufgabe 3

%%\;\;\Rightarrow\;\;%% Man darf die Klammern nicht weglassen, da die Rechnung nicht nur aus Additionen oder Multiplikationen besteht. Sonst wäre das Assoziativgesetz anwendbar und Klammern könnten weggelassen werden.

%%2005-\left[\left(715-309\right)-\left(284-197\right)\right]%%

Teilaufgabe 1

%%2005-\left[\left(715-309\right)-\left(284-197\right)\right]%%

Überschlage und rechne die Klammern aus.

%%2000-\left[\left(700-300\right)-\left(300-200\right)\right]=%%

%%2000-\left(400-100\right)=%%

 

%%2000-300=%%

 

%%=1700%%

 

Teilaufgabe 2

%%2005-\left[\left(715-309\right)-\left(284-197\right)\right]=%%

Löse die Klammern auf.

%%2005-\left(406-87\right)=%%

%%2005-319=%%

%%=1686%%

 

 

 

Teilaufgabe 3

%%\;\;\Rightarrow\;\;%% Man darf die Klammern nicht weglassen, da die Rechnung nicht nur aus Additionen oder Multiplikationen besteht. Sonst wäre das Assoziativgesetz anwendbar und Klammern könnten weggelassen werden.

Kommentieren Kommentare