🎓 Ui, fast schon Prüfungszeit? Hier geht's zur Mathe-Prüfungsvorbereitung.
Springe zum Inhalt oder Footer
SerloDie freie Lernplattform

Bestimme den Schnittwinkel zwischen Gerade und Ebene.

  1. g:  x=(121)+r(212)\mathrm g:\;\overrightarrow{\mathrm x}=\begin{pmatrix}-1\\2\\1\end{pmatrix}+\mathrm r\cdot\begin{pmatrix}2\\-1\\-2\end{pmatrix}   und   E:  (231)[x(101)]=0\mathrm E:\;\begin{pmatrix}2\\-3\\1\end{pmatrix}\circ\left[\overrightarrow{\mathrm x}-\begin{pmatrix}1\\0\\1\end{pmatrix}\right]=0

  2. g:  x=(221)+r(111)\mathrm g:\;\overrightarrow{\mathrm x}=\begin{pmatrix}2\\2\\1\end{pmatrix}+\mathrm r\cdot\begin{pmatrix}1\\-1\\1\end{pmatrix}   und   E:  x=(115)+r(201)+s(113)\mathrm E:\;\overrightarrow{\mathrm x}=\begin{pmatrix}1\\1\\5\end{pmatrix}+\mathrm r\cdot\begin{pmatrix}2\\0\\1\end{pmatrix}+\mathrm s\cdot\begin{pmatrix}-1\\-1\\3\end{pmatrix}

  3. g:  x=(9420)+r(406)\mathrm g:\;\overrightarrow{\mathrm x}=\begin{pmatrix}-9\\-4\\20\end{pmatrix}+\mathrm r\cdot\begin{pmatrix}4\\0\\-6\end{pmatrix}   und   E:  (311)x+6=0\mathrm E:\;\begin{pmatrix}3\\1\\-1\end{pmatrix}\circ\overrightarrow{\mathrm x}+6=0

  4. g:  x=(232)+r(113)\mathrm g:\;\overrightarrow{\mathrm x}=\begin{pmatrix}2\\-3\\2\end{pmatrix}+\mathrm r\cdot\begin{pmatrix}1\\-1\\3\end{pmatrix}   und   E:  x=(311)+r(121)+s(012)\mathrm E:\;\overrightarrow{\mathrm x}=\begin{pmatrix}-3\\1\\1\end{pmatrix}+\mathrm r\cdot\begin{pmatrix}1\\-2\\-1\end{pmatrix}+\mathrm s\cdot\begin{pmatrix}0\\-1\\2\end{pmatrix}

  5. g:  x=(132)+r(210)\mathrm g:\;\overrightarrow{\mathrm x}=\begin{pmatrix}1\\3\\2\end{pmatrix}+\mathrm r\cdot\begin{pmatrix}2\\1\\0\end{pmatrix}   und   E:  x1+x2+2x311=0\mathrm E:\;{\mathrm x}_1+{\mathrm x}_2+2\cdot{\mathrm x}_3-11=0

  6. g:  x=(231)+r(231)\mathrm g:\;\overrightarrow{\mathrm x}=\begin{pmatrix}2\\3\\-1\end{pmatrix}+\mathrm r\cdot\begin{pmatrix}2\\-3\\1\end{pmatrix}   und   E:  (342)x4=0\mathrm E:\;\begin{pmatrix}3\\4\\-2\end{pmatrix}\circ\overrightarrow{\mathrm x}-4=0

  7. g:  x=(513)+r(721)\mathrm g:\;\overrightarrow{\mathrm x}=\begin{pmatrix}5\\-1\\3\end{pmatrix}+\mathrm r\cdot\begin{pmatrix}7\\-2\\1\end{pmatrix}   und   E:  x14x35=0\mathrm E:\;{\mathrm x}_1-4\cdot{\mathrm x}_3-5=0