Aufgaben zu Schnittpunkte berechnen
- 1
Bestimme bei folgenden Funktionen die Schnittpunkte mit den Koordinatenachsen.
f(x)=(x−2)2−1
Für diese Aufgabe benötigst Du folgendes Grundwissen: Schnittpunkte mit den Koordinatenachsen
Um die Schnittpunkte mit den Koordinatenachsen zu berechnen, wird eine der Variablen in der Funktion (x, y) gleich 0 gesetzt.
Schnittpunkte mit der x-Achse
Die Schnittpunkte mit der x-Achse sind die Nullstellen der Funktion.Man erhält sie, indem man die Funktion bzw. den y-Wert gleich Null setzt.
f(x)=(x−2)2−1(x−2)2x1,2−2x1,2x1x2======01±1±1+213∣+1∣∣+2
Die Schnittpunkte mit der x-Achse liegen bei A(1∣0) und B(3∣0).
Schnittpunkt mit der y-Achse
Um den Schnittpunkt mit der y-Achse zu ermitteln, muss für den x-Wert 0 eingesetzt werden.
f(0) = (0−2)2−1 = (−2)2−1 = 4−1 = 3 Der Schnittpunkt mit der y-Achse liegt bei C(0∣3).
Hast du eine Frage oder Feedback?
g(x)=x3+2x2−3x
Für diese Aufgabe benötigst Du folgendes Grundwissen: Schnittpunkte mit den Koordinatenachsen
Um die Schnittpunkte mit den Koordinatenachsen zu berechnen, wird eine der Variablen in der Funktion (x, y) gleich 0 gesetzt.
Schnittpunkte mit der x-Achse
Die Schnittpunkte mit der x-Achse sind die Nullstellen der Funktion.Man erhält sie, indem man die Funktion bzw. den y-Wert gleich Null setzt.
g(x) = x3+2x2−3x ↓ Kleinste Potenz von x ausklammern.
0 = x3+2x2−3x ↓ Ein Produkt wir dann Null, wenn einer der Faktoren Null ist.
0 = x(x2+2x−3) ⇒x1=0
Setze die Klammer gleich Null.
x2+2x−3 = 0 ↓ Mitternachtsformel anwenden.
x2,3 = 2⋅1−2±22−4⋅1⋅(−3) = 2−2±16 = 2−2±4 x2=22=1
x3=2−6=−3
Die Schnittpunkte mit der x-Achse liegen bei A(−3∣0) und B(0∣0) und C(1∣0).
Schnittpunkt mit der y-Achse
Um den Schnittpunkt mit der y-Achse zu ermitteln, muss für den x-Wert 0 eingesetzt werden.
g(0) = 03+2⋅02−3⋅0 = 0+0−0 = 0 Der Schnittpunkt mit der y-Achse liegt bei B(0∣0).
Hast du eine Frage oder Feedback?
h(x)=0,5x4−8
Für diese Aufgabe benötigst Du folgendes Grundwissen: Schnittpunkte mit den Koordinatenachsen
Um die Schnittpunkte mit den Koordinatenachsen zu berechnen, wird eine der Variablen in der Funktion (x, y) gleich 0 gesetzt.
Schnittpunkte mit der x-Achse
Die Schnittpunkte mit der x-Achse sind die Nullstellen der Funktion.Man erhält sie, indem man die Funktion bzw. den y-Wert gleich Null setzt.
h(x)=0,5x4−80,5x4x4x1,2x1x2======0816±2−22∣+8∣⋅2∣4
Die Schnittpunkte mit der x-Achse liegen bei A(−2∣0) und B(2∣0).
Schnittpunkt mit der y-Achse
Um den Schnittpunkt mit der y-Achse zu ermitteln, muss für den x-Wert 0 eingesetzt werden.
h(0) = 0,5⋅04−8 = 0−8 = −8 Der Schnittpunkt mit der y-Achse liegt bei C(0∣−8).
Hast du eine Frage oder Feedback?
- 2
Gegeben ist die Gleichung der Geraden g:y=−x+3
und die Gleichung der ganzrationalen Funktion f:y=0,5x3−3x2+4,5x.
Berechne die Schnittpunkte von Gf und Gg .
Errate dazu eine Lösung der Schnittgleichung und berechne die weiteren Lösungen mit Hilfe der Polynomdivision.
Für diese Aufgabe benötigst Du folgendes Grundwissen: Polynomdivision
Schnittpunkte berechnen
Die beiden Funktionen haben einen Schnittpunkt, wenn sie für einen gleichen x-Wert denselben y-Wert haben. Setze also die Funktionen f und g gleich. Die Funktionen lauten:
0,5x30,5x3−3x2−3x2+4,5x+5,5xf(x)−3===g(x)−x+30∣−3+x
Für Polynome vom Grad 3 musst du eine Nullstelle erraten. Alle weiteren Nullstellen lassen sich dann mit einer Polynomdivision ermitteln.
Eine Nullstelle von 0,5x3−3x2+5,5x−3 ist x1=1, denn
Um den ersten Schnittpunkt von f und g zu bestimmen, kannst du nun x1=1 entweder in f oder g einsetzen.
Einsetzen in f ergibt:
f(1)=−1+3=2
Der Schnittpunkt ist dann: S1=(1∣2)
Polynomdivision
Wende nun die Polynomdivision auf folgende Gleichung an:
0,5x3−3x2+5,5x−3=0
(0,5x3−3x2+5,5x−3):(x−1)=0,5x2−2,5x+3−(0,5x3−0,5x2)−2,5x2+5,5x−(−2,5x2+2,5x)3x−3−(3x−3)0
Verbleibende Nullstellen berechnen
Von 0,5x2−2,5x+3 kannst du nun noch die beiden Nullstellen bestimmen. Nutze hierfür beispielsweise die Mitternachtsformel.
0,5x2−2,5x+3=0
⇒x2,3===(2⋅0,5)2,5±(−2,5)2−4⋅0,5⋅312,5±0,2512,5±0,5
x2=12,5+0,5=13=3
x3=12,5−0,5=12=2
Die Nullstellen von 0,5x3−3x2+5,5x−3 sind also:
weitere Schnittpunkte berechnen
Den zweiten und dritten Schnittpunkt von f und g, kannst du nun bestimmen, indem du x2=3 und x3=2 in f oder g einsetzt.
Einsetzen in f ergibt:
f(3)=−3+3=0⇒S2(3∣0)
f(2)=−2+3=1⇒S3(2∣1)
Schnittpunkte
Die Schnittpunkte der beiden Funktionen liegen bei S1(1∣2), S2(3∣0) und S3(2∣1).
- 3
Die beiden Funktionen f(x)=3x3−2x2−x und g(x)=4x3−5x2+3x−12 sind gegeben. Es gilt x∈R. Berechne die Schnittpunkte von f(x) und g(x).
Für diese Aufgabe benötigst Du folgendes Grundwissen: Schnittpunkte von Funktionen
Tipp: Schneiden sich zwei Funktionen haben ihre x- und y-Koordinaten an diesem Punkt denselben Wert. Folglich muss man beide Funktionen gleichsetzen und auf eine Seite bringen, um nach x aufzulösen.
Gleichsetzten der Funktionen
f(x)=3x3−2x2−x
g(x)=4x3−5x2+3x−12
4x3−5x2+3x−12x3−5x2+3x−12x3−3x2+3x−12===3x3−2x2−x−2x2−x−x∣−3x3∣+2x2∣+x
x3−3x2+4x−12=0
x1=3 durch Taschenrechner oder Raten einer Nullstelle
Berechnung einer Nullstelle mittels Polynomdivision
(x3−3x2+4x−12):(x−3)=x2+4−(x3−3x2)0+4x−12−(4x−12)0
Neue Funktion: x2+4
Berechnung der restlichen Nullstellen
Auflösen der neuen Funktion nach x:
x2+4x2x===0−4−4∣−4∣
Da nun unter der Wurzel eine negative Zahl steht, gibt es keine weiteren Lösungen und damit auch keine weiteren x-Koordinaten der Schnittpunkte.
Die vorher ausgerechnete x-Koordinate 3 ist somit die einzige Koordinate.
⇒ Es gibt nur einen Schnittpunkt
Setze den x-Wert in eine der beiden Funktionen f(x) oder g(x) ein.
y=f(3)=3⋅33−2⋅32−3
y=f(3)=81−18−3
y=f(3)=60
Der Schnittpunkt der beiden Funktionen liegt bei P(3∣60) .
Gleichsetzten beider Funktionen g(x)=f(x)
Auflösen nach Null ⇒ Polynomfunktion dritten Grades
Berechnung der Nullstellen mittels Polynomdivision
Erhalt einer Nullstelle für x∈R
Berechnung des y-Werts durch Einsetzten von x in g(x) oder f(x)
Ergebnis als Schnittpunkt P in der Form: P(x,y)
Dieses Werk steht unter der freien Lizenz
CC BY-SA 4.0 → Was bedeutet das?