Grenzwert bestimmen

Grenzwerte einiger Funktionen

In diesem Artikel findest du die Grenzwerte von einigen wichtigen Funktionen. Die graphischen Darstellungen sollen dabei helfen, sich diese Grenzwerte einzuprägen. Zur Bedeutung von Grenzwerten siehe Grenzwertbetrachtung.

Potenzfunktion

Für gerade und ganzzahlige n>0n>0 gilt:

Und für ungerade und ganzzahlige n>0n>0 gilt:

Für ungerade sowie gerade ganzzahlige n>0n>0 gilt:

Für gerade und ganzzahlige n<0n<0 gilt:

Für ungerade und ganzzahlige n<0n<0 gilt:

Für gerade sowie ungerade ganzzahlige n<0n<0 gilt:

Wurzelfunktion

Exponentialfunktion

Für reelle a>1a>1 gilt:

Für reelle a, welche im Intervall (0;1) liegen, gilt:

e-Funktion

Die e-Funktion ist eine Exponentialfunktion mit der eulerschen Zahl ee als Basis. Die Bezeichnung wird an dieser Stelle genutzt, da sehr häufig mit e-Funktionen gearbeitet wird.

Logarithmusfunktion

Tangensfunktion

Rechenregeln

Summen, Differenzen, Produkte und Quotienten

Der Grenzwert einer Summe ist die Summe der Grenzwerte und der Grenzwert eines Produktes ist das Produkt der Grenzwerte.

Konstanter Faktor

Der konstante Faktor b kann vor den Limes gezogen werden. Konstante Faktoren können Variablen als Platzhalter für Zahlen oder auch Zahlen selbst sein. Achtung: Damit ist aber gemeint, dass b unabhängig von x ist!

Logarithmus und e-funktion

Bei Produkten von e-Funktionen, Polynomen und Logarithmus gilt der Merkspruch  "e-Funktion gewinnt immer, Logarithmus verliert immer", d.h. z.B., dass bei einem Grenzwert wie

bei dem die e-Funkion gegen 00 und das Polynom gegen \infty geht, der Grenzwert sich nach der e-Funktion richtet:

Beim Logarithmus geht es genau andersrum, also bei dem Grenzwert

bei dem das Polynom gegen 00 geht und der Logarithmus gegen -\infty geht gilt

Regel von de L'Hospital 

Mit der Regel von de L'Hospital kann man den Grenzwert einiger Funktionen leichter bestimmen.

 

 


Dieses Werk steht unter der freien Lizenz
CC BY-SA 4.0.Was bedeutet das?