Springe zum Inhalt oder Footer
SerloDie freie Lernplattform

Stochastik II

🎓 Prüfungsbereich für Bayern

Weitere Bundesländer & Aufgaben:
Mathe- Prüfungen Startseite

Austausch & Hilfe:
Prüfungen-Discord

Die Aufgabenstellung findest du hier zum Ausdrucken als PDF.

  1. 1
    Image Title
  2. 2

    Der Umfang zufolge hätte der Kandidat der Partei A etwa 50 %50\ \% aller Stimmen erhalten, wenn die Wahl zum Zeitpunkt der Befragung stattgefunden hätte. Ein Erfolg im ersten Wahlgang, für den mehr als 50 %50\ \% aller Stimmen erforderlich sind, ist demnach fraglich. Deshalb rät die von Partei A eingesetzte Wahlkampfberaterin in der Endphase des Wahlkampfs zu einer zusätzlichen Kampfberaterin in der Endphase des Wahlkampfs zu einer zusätzlichen Kampagne. Der Schatzmeister der Partei A möchte die hohen Kosten, die mit einer zusätzlichen Kampagne verbunden wären, jedoch möglichst vermeiden.

    1. Um zu einer Entscheidung über die Durchführung einer zusätzlichen Kampagne zu gelangen, soll die Nullhypothese „Der Kandidat der Partei A würde gegenwärtig höchstens 50 %50\ \% aller Stimmen erhalten." mithilfe einer Stichprobe von 200 Wahlberechtigten auf einem Signifikanzniveau von 5 %5\ \% getestet werden. Bestimmen Sie die zugehörige Entscheidungsregel.

    2. Begründen Sie, dass die Wahl der Nullhypothese für den beschriebenen Test in Einklang mit dem Anliegen der Wahlkampfberaterin steht, einen Erfolg bereits im ersten Wahlgang zu erreichen.

  3. 3

    In einer Großstadt steht die Wahl des Oberbürgermeisters bevor. 12 %12\ \% der Wahlberechtigten sind Jungwähler, d. h. Personen im Alter von 18 bis 24 Jahren. Vor Beginn des Wahlkampfs wird eine repräsentative Umfrage unter den Wahlberechtigten durchgeführt. Der Umfrage zufolge haben sich 44 %44\ \% der befragten Wahlberechtigten bereits für einen Kandidaten entschieden. Jeder Siebte derjenigen Befragten, die sich noch nicht für einen Kandidaten entschieden haben, ist Jungwähler.

    Betrachtet werden folgende Ereignisse:

    J: „Eine aus den Befragten zufällig ausgewählte Person ist Jungwähler.“

    K: „Eine aus den Befragten zufällig ausgewählte Person hat sich bereits für einen Kandidaten entschieden.“

    1. Erstellen Sie zu dem beschriebenen Sachzusammenhang eine vollständig ausgefüllte Vierfeldertafel.

    2. Zeigen Sie, dass PJ(K)>PJ(K)P_J(\overline{K})>P_{\overline{J}}(\overline{K}) git. Begründen Sie, dass es trotz der Gültigkeit dieser Ungleichung nicht sinnvoll ist, sich im Wahlkampf vorwiegend auf die Jungwähler zu konzentrieren.

    3. Der Kandidat der Partei A spricht an einem Tag während seines Wahlkampfs 48 zufällig ausgewählte Wahlberechtigte an. Bestimmen Sie die Wahrscheinlichkeit dafür, dass sich darunter genau sechs Jungwähler befinden.


Dieses Werk steht unter der freien Lizenz
CC BY-SA 4.0Was bedeutet das?