Rechen- und Verständnisaufgaben zur Quadratwurzel
- 1
Vereinfache:
500+398−58−345
64k2
Für diese Aufgabe benötigst Du folgendes Grundwissen: Wurzeln
64k2 ↓ Zerlege die Zahl unter der Wurzel .
= 82⋅k2 ↓ Ziehe die Potenzen aus den Wurzeln .
(Vergiss nicht die Betragsstriche um k !)
= 8⋅∣k∣ Hast du eine Frage oder Feedback?
(5ax5y:a2x3y3)⋅a25x(x,y,z>0)
- 2
Vereinfache jeweils so weit wie möglich.
(1−3)⋅(1+3)
Für diese Aufgabe benötigst Du folgendes Grundwissen: Potenzen
(1−3)⋅(1+3) ↓ Binomische Formel anwenden
= (12−32) ↓ Quadrieren und die Wurzel heben sich auf.
= (1−3) = −2 Hast du eine Frage oder Feedback?
(2−32)2
Für diese Aufgabe benötigst Du folgendes Grundwissen: Potenzen
(2−32)2 ↓ In der Klammer subtrahieren
= (−22)2 = (−2)2⋅(2)2 ↓ Beide Teile getrennt quadrieren
= 4⋅2 = 8 Hast du eine Frage oder Feedback?
3⋅(6112−3271)
Für diese Aufgabe benötigst Du folgendes Grundwissen: Potenzen
3⋅(6112−3271) ↓ 61 und 3 in Wurzel ziehen
= 3⋅(361⋅12−9⋅271) ↓ In den Wurzeln multiplizieren
= 3⋅(31−31) ↓ In der Klammer subtrahieren
= 3⋅0 = 0 Hast du eine Frage oder Feedback?
(2108−754):27
Für diese Aufgabe benötigst Du folgendes Grundwissen: Potenzen
(2108−754):27 ↓ Division in Bruchschreibweise umwandeln
= 27(2108−754) ↓ Brüche einzeln schreiben
= 272108−27754 ↓ Den 1. Bruch teilweise radizieren.
= 27427−277⋅2⋅27 ↓ = 4−72 Hast du eine Frage oder Feedback?
(2−18)2
Für diese Aufgabe benötigst Du folgendes Grundwissen: Potenzen
= (2−18)2 ↓ 2. Binomische Formel anwenden
= 22−2⋅2⋅18+182 = 2−12+18 = 8 Alternative Lösung
(2−18)2 ↓ teilweise Wurzelziehen
= (2−32)2 ↓ zusammenfassen
= (−22)2 = (−2)2⋅(2)2 = 4⋅2 = 8 Hast du eine Frage oder Feedback?
(27−3)(1−28)
Für diese Aufgabe benötigst Du folgendes Grundwissen: Potenzen
(27−3)(1−28) ↓ Ziehe die 2 unter die Wurzel. Es gilt: 27=4⋅7
= (28−3)(1−28) ↓ = 28−28−3+328 ↓ Vereinfachen
= 28−31+328 = 428−31 Alternativ kannst du auch zunächst die Vereinfachung 28=4⋅7=27 benutzen.
Es ist oft gut, früh zu vereinfachen, weil du dann mit kleineren Zahlen rechnen kannst.
(87−3)(1−28) ↓ Vereinfache wie oben angegeben
= (27−3)(1−27) ↓ = 27−4⋅7−3+67 ↓ Fasse zusammen
= 87−31 Hast du eine Frage oder Feedback?
363+672−428−178
Für diese Aufgabe benötigst Du folgendes Grundwissen: Potenzen
363+672−428−178 ↓ Die Werte unter der Wurzel faktorisieren.
= 37⋅9+62⋅36−47⋅4−172⋅4 ↓ = 3⋅37+6⋅62−4⋅27−342 = 97+362−87−342 ↓ Zusammenfassen
= 7+22 Hast du eine Frage oder Feedback?
- 3
Mache den Nenner rational. Vereinfache so weit wie möglich.
21
Für diese Aufgabe benötigst Du folgendes Grundwissen: Nenner rational machen
Mit dem Nenner erweitern .
21 = 2⋅21⋅2 = (2)22 ↓ Die Quadratwurzel und das Quadrat heben sich auf.
= 22 Hast du eine Frage oder Feedback?
235
Für diese Aufgabe benötigst Du folgendes Grundwissen: Nenner rational machen
Mit 3 erweitern .
235 = 2⋅353 = 2⋅35⋅3 ↓ Fasse zusammen
= 653 Hast du eine Frage oder Feedback?
12525
Für diese Aufgabe benötigst Du folgendes Grundwissen: Nenner rational machen
12525 = 25⋅525 ↓ Teilweise radizieren.
= 5525 ↓ Mit 5 erweitern.
= 5⋅5⋅525⋅5 = 5⋅525⋅5 ↓ = 5 Hast du eine Frage oder Feedback?
xyx−y
Für diese Aufgabe benötigst Du folgendes Grundwissen: Nenner rational machen
Mit dem Nenner erweitern .
xyx−y = xy⋅xy(x−y)⋅xy = xy2x⋅xy−y⋅xy ↓ Die Quadratwurzel und das Quadrat heben sich auf.
= xyx2⋅y−y2⋅x = xyxy−yx ↓ Bruch auseinanderziehen.
= xyxy−xyyx ↓ = yy−xx Hast du eine Frage oder Feedback?
- 4
Mache den Nenner rational:
Dieses Werk steht unter der freien Lizenz
CC BY-SA 4.0 → Was bedeutet das?