Bestimme bei folgenden Funktionen den Definitionsbereich, die Nullstellen, das Symmetrieverhalten, die Grenzwerte und die Wertemenge.
f(x)=−x4−2x2+3
Für diese Aufgabe benötigst Du folgendes Grundwissen: Kurvendiskussion
Definitionsbereich festlegen
Der Definitionsbereich gibt an, welche x-Werte in eine Funktion eingesetzt werden dürfen.
Da die Funktion keine Brüche , Wurzeln oder Logarithmen mit x enthält, die den Definitionsbereich einschränken könnten, lautet der Definitionsbereich der Funktion Df=R.
Nullstellenbestimmung
Die Nullstellen einer Funktion f sind die x-Werte, für die f(x)=0 wird.
Substitution
Bei der Substitution wird in einem Term ein Teil (z.B. x2) durch einen neuen Term (z.B. u) ersetzt.
f(x) = −x4−2x2+3 ↓ In f(x) wird x2 durch u ersetzt, wodurch man die Funktion f(u) erhält.
f(u) = −u2−2u+3 ↓ Mitternachtsformel anwenden.
u1,2 = 2⋅(−1)2±(−2)2−4⋅(−1)⋅3 ↓ Unter der Wurzel zusammenfassen.
= −22±4+12 ↓ Unter der Wurzel addieren.
= −22±16 = −22±4 u1 = −3 Fall 1:+ u2 = 1 Fall 2:− Resubstitution
Die Resubstitution beschreibt das Rückgängigmachen der Substitution.
x1,22=u1=−3
Für −3 gibt es keine reelle Lösung.
x3,42=u2=1
Wurzel ziehen.
x3,4=±1
Da es für x1,2 keine reelle Lösung gibt, sind x3,4 die einzigen Nullstellen von f(x).
Die Funktion f(x) hat zwei Nullstellen bei x3=−1, x4=1.
Symmetrieverhalten
In dieser Lösung wird die Symmetrie der Funktion durch einfache Betrachtung und durch Berechnung überprüft.
Durch Betrachtung
Alle Exponenten zur Basis x sind gerade.
⇒ Achsensymmetrie bezüglich der y-Achse.
Durch Berechnung
f(x) = −x4−2x2+3 ↓ Prüfen ob f(x)=f(−x). Setze dafür −x in f(x) ein.
f(−x) = −(−x)4−2(−x)2+3 ↓ Umformen.
f(x) = −x4−2x2+3 ⇒ Achsensymmetrie zur y-Achse
Grenzwertbetrachtung
Bei der Grenzwertbetrachtung wird das Verhalten einer Funktion und ihres Graphen im Unendlichen oder an einer bestimmten Stelle (meist Definitionslücke) ermittelt.
Df=R
Da die Funktion keine Definitionslücken hat, muss nur das Verhalten gegen ±∞ betrachtet werden.
Bei ganzrationalen Funktionen ist nur die höchste Potenz wichtig, um die Grenzwertbetrachtung durchzuführen.
gegen +∞
x→∞lim−x4︷→−∞−2x2︷→∞+3=−∞
gegen −∞
x→−∞lim−x4︷→−∞−2x2︷→∞+3=−∞
Wertemenge bestimmen
Die Wertemenge einer Funktion ist die Menge aller möglichen Funktionswerte, die herauskommen können, wenn man alle Zahlen aus der Definitionsmenge in die Funktion einsetzt.
Anhand der Grenzwerte kannst du erkennen, dass der Graph der Funktion eine nach unten geöffnete Parabel ist. Somit beschreibt der Scheitelpunkt den höchsten Punkt des Graphen. Da die Funktion achsensymmetrisch ist, liegt die x-Koordinate des Scheitelpunkts zwischen den Nullstellen, also bei x=0.
Der Scheitelpunkt liegt also bei S(0∣f(0)).
Berechne f(0).
f(0)=−04−2⋅02+3=3
Gib die Wertemenge an.
Wf=]−∞;3]
Hast du eine Frage oder Feedback?
g(x)=x2+2x+1
Für diese Aufgabe benötigst Du folgendes Grundwissen: Kurvendiskussion
Definitionsbereich festlegen
Der Definitionsbereich gibt an, welche x-Werte in eine Funktion eingesetzt werden dürfen.
Da die Funktion keine Brüche , Wurzeln oder Logarithmen mit x enthält, die den Definitionsbereich einschränken könnten, lautet der Definitionsbereich der Funktion Dg=R .
Nullstellenbestimmung
Die Nullstellen einer Funktion f sind die x-Werte, für die f(x)=0 wird.
g(x) = x2+2x+1 ↓ Setze g(x)=0.
x2+2x+1 = 0 ↓ 1. Binomische Formel anwenden.
(x+1)2 = 0 x1,2 = −1 Die Funktion g(x) hat eine doppelte Nullstelle bei x1,2=−1.
Symmetrieverhalten
In dieser Lösung wird die Symmetrie der Funktion durch einfache Betrachtung und durch Berechnung überprüft.
Durch Betrachtung
Da nicht alle Exponenten zur Basis x gerade sind, ist g nicht achsensymmetrisch bezüglich zur y-Achse.
Da nicht alle Exponenten zur Basis x ungerade sind, ist g nicht punktsymmetrisch zum Ursprung.
Somit besitzt g also keine Symmetrie bezüglich der y-Achse oder des Ursprungs.
Durch Berechnung
g(x)=x2+2x+1
Prüfen ob g(x)=g(−x). Setze dafür −x in g(x) ein.
g(−x)=(−x)2+2⋅(−x)+1
g(−x)=x2−2x+1=g(x)
⇒ keine Achsensymmetrie zur y-Achse
Prüfen ob g(x)=−g(−x).
−g(−x)=−(x2−2x+1)=−x2+2x−1=g(x)
⇒ keine Punktymmetrie zum Ursprung
Somit liegt bei g keine Symmetrie bezüglich der y-Achse oder des Ursprungs vor.
Grenzwertbetrachtung
Bei der Grenzwertbetrachtung wird das Verhalten einer Funktion und ihres Graphen im Unendlichen oder an einer bestimmten Stelle (meist Definitionslücke) ermittelt.
Dg=R
Da die Funktion keine Definitionslücken hat, muss nur das Verhalten gegen ±∞ betrachtet werden.
Bei ganzrationalen Funktionen ist nur die höchste Potenz wichtig, um die Grenzwertbetrachtung durchzuführen.
gegen +∞
x→∞limx2︷→∞+2x︷→∞+1=∞
gegen −∞
x→−∞limx2︷→∞+2x︷→−∞+1=∞
Wertemenge bestimmen
Die Wertemenge einer Funktion ist die Menge aller möglichen Funktionswerte, die herauskommen können, wenn man alle Zahlen aus der Definitionsmenge in die Funktion einsetzt.
Anhand der Grenzwerte kannst du erkennen, dass der Graph der Funktion eine nach oben geöffnete Parabel ist. Somit beschreibt der Scheitelpunkt den tiefsten Punkt des Graphen. Da die Funktion eine doppelte Nullstelle bei x1,2=−1 besitzt, ist die Nullstelle zugleich der Scheitelpunkt.
Der Scheitelpunkt liegt also bei S(−1∣0).
Gib die Wertemenge an.
Wf=[0;∞[
Hast du eine Frage oder Feedback?
h(x)=−x3+4x
Für diese Aufgabe benötigst Du folgendes Grundwissen: Kurvendiskussion
Definitionsbereich festlegen
Der Definitionsbereich gibt an, welche x-Werte in eine Funktion eingesetzt werden dürfen.
Da die Funktion keine Brüche , Wurzeln oder Logarithmen mit x enthält, die den Definitionsbereich einschränken könnten, lautet der Definitionsbereich der Funktion Dh=R .
Nullstellenbestimmung
Die Nullstellen einer Funktion f sind die x-Werte, für die f(x)=0 wird.
Ausklammern
Um diese Aufgabe lösen zu können, brauchst du Wissen über das Ausklammern.
⇒x1=0
Setze die Klammer gleich Null und löse nach x auf.
−x2+44±2===0x2x2,3∣+x2∣
Die Funktion h(x) hat drei Nullstellen bei x1=0, x2=−2 und x3=2.
Symmetrieverhalten
In dieser Lösung wird die Symmetrie der Funktion durch einfache Betrachtung und durch Berechnung überprüft.
Durch Betrachtung
Alle Exponenten von x sind ungerade.
⇒ Punktsymmetrie bezüglich des Ursprungs.
Durch Berechnung
h(x)=−x3+4x
Prüfen ob h(x)=h(−x). Setze dafür −x in h(x) ein.
h(−x)=−(−x)3+4⋅(−x)
h(−x)=x3−4x=h(x)
⇒ keine Achsensymmetrie zur y-Achse
Prüfen ob h(x)=−h(−x).
−h(−x) = −(x3−4x) h(x) = −x3+4x ⇒ Punktymmetrie bezügöich des Ursprungs
Grenzwertbetrachtung
Bei der Grenzwertbetrachtung wird das Verhalten einer Funktion und ihres Graphen im Unendlichen oder an einer bestimmten Stelle (meist Definitionslücke) ermittelt.
Dh=R
Da die Funktion keine Definitionslücken hat, muss nur das Verhalten gegen ±∞ betrachtet werden.
gegen +∞
x→∞lim−x3︷→−∞+4x︷→∞=−∞
gegen −∞
x→−∞lim−x3︷→∞+4x︷→−∞=∞
Wertemenge bestimmen
Die Wertemenge einer Funktion ist die Menge aller möglichen Funktionswerte, die herauskommen können, wenn man alle Zahlen aus der Definitionsmenge in die Funktion einsetzt.
Da es sich um eine ganzrationale Funktion 3. Grades handelt, wird der Wertebereich nicht eingeschränkt. Somit lautet die Wertemenge:
Wf=R
Hast du eine Frage oder Feedback?
i(x)=x3−4x2−3x+18
Für diese Aufgabe benötigst Du folgendes Grundwissen: Kurvendiskussion
Definitionsbereich festlegen
Der Definitionsbereich gibt an, welche x-Werte in eine Funktion eingesetzt werden dürfen.
Da die Funktion keine Brüche , Wurzeln oder Logarithmen mit x enthält, die den Definitionsbereich einschränken könnten, lautet der Definitionsbereich der Funktion Di=R .
Nullstellenbestimmung
Die Nullstellen einer Funktion f sind die x-Werte, für die f(x)=0 wird.
i(x) = x3−4x2−3x+18 ↓ Versuche eine Nullstelle durch systematisches Probieren herauszufinden. Setze z.B. −2 in i(x) ein.
i(−2) = (−2)3−4⋅(−2)2−3⋅(−2)+18 0 = −8−16+6+18 Die Funktion i(x) hat an der Stelle x1=−2 eine Nullstelle. Da i(−2)=0, wissen wir, dass i(x) den dazugehörigen Linearfaktor (x+2) besitzt.
Führe nun die Polynomdivision i(x):(x+2) durch.
−(x3−4x2−3x+18):(x+2)=x2−6x+9−(x3+2x2)−6x2−3x−(−6x2−12x)9x+18−(9x+18)0
Die Funktion g(x) wird dann 0, sobald mindestens einer der Faktoren gleich 0 ist. Da die Nullstelle x1=−2 bereits bekannt ist, kannst du die weiteren Nullstellen von i bestimmen, indem du das erhaltene Polynom gleich 0 setzt.
x2−6x+9 = 0 ↓ 2. Binomische Formel anwenden.
(x−3)2 = 0 x2,3 = 3 Die Funktion i(x) hat eine einfache Nullstelle bei x1=−2 und eine doppelte Nullstelle bei x2,3=3.
Symmetrieverhalten
In dieser Lösung wird die Symmetrie der Funktion durch einfache Betrachtung und durch Berechnung überprüft.
Durch Betrachtung
Da nicht alle Exponenten zur Basis x gerade sind, ist i nicht achsensymmetrisch bezüglich zur y-Achse.
Da nicht alle Exponenten zur Basis x ungerade sind, ist i nicht punktsymmetrisch zum Ursprung.
Somit besitzt i also keine Symmetrie bezüglich der y-Achse oder des Ursprungs.
Durch Berechnung
i(x) = x3−4x2−3x+18 ↓ Prüfen ob i(x)=i(−x). Setze dafür −x in i(x) ein.
i(−x) = (−x)3−4⋅(−x)2−3⋅(−x)+18 i(−x)=−x3−4x2+3x+18=i(x)
⇒ keine Achsensymmetrie zur y-Achse
Prüfen ob i(x)=−i(−x).
−i(−x)=−(−x3−4x2+3x+18)
−i(−x)=x3+4x2−3x−18=i(x)
⇒ keine Punktymmetrie zum Ursprung
Somit liegt bei i keine Symmetrie bezüglich der y-Achse oder des Ursprungs vor.
Grenzwertbetrachtung
Bei der Grenzwertbetrachtung wird das Verhalten einer Funktion und ihres Graphen im Unendlichen oder an einer bestimmten Stelle (meist Definitionslücke) ermittelt.
Di=R
Da die Funktion keine Definitionslücken hat, muss nur das Verhalten gegen ±∞ betrachtet werden.
Bei ganzrationalen Funktionen ist nur die höchste Potenz wichtig, um die Grenzwertbetrachtung durchzuführen.
gegen +∞
x→∞limx3︷→∞−4x2︷→∞−3x︷→∞+18=∞
gegen −∞
x→−∞limx3︷→−∞−4x2︷→∞−3x︷→−∞+18=−∞
Wertemenge bestimmen
Die Wertemenge einer Funktion ist die Menge aller möglichen Funktionswerte, die herauskommen können, wenn man alle Zahlen aus der Definitionsmenge in die Funktion einsetzt.
Da es sich um eine ganzrationale Funktion 3. Grades handelt, wird der Wertebereich nicht eingeschränkt. Somit lautet die Wertemenge:
Wf=R
Hast du eine Frage oder Feedback?