Löse die folgenden Ungleichungen.
13x−5≤14x+3
Für diese Aufgabe benötigst Du folgendes Grundwissen: Ungleichungen
Brüche auf denselben Hauptnenner bringen.
Zusammenfassen
Durch einen Bruch zu dividieren, bedeutet mit seinem Kehrbruch zu multiplizieren.
x∈]−∞;96]
Kommentiere hier 👉
2−x3+5≥x2
Klammern ausmultiplizieren.
x∈]−∞;345]
−12⋅(x−6)<6
Klammer ausmultiplizieren.
x∈]−6;∞[
3(x−3)≥5(1−x2)
Multipliziere aus
Fasse zusammen
Multipliziere
Die Ungeichung ist für x≥2811≈2,55 erfüllt, die Lösungsmenge ist also [2811;∞[.
12(x−5)>0
Durch einen Bruch zu dividieren bedeutet mit seinem Kehrbruch zu multiplizieren.
x∈]5;∞[
2x+52<−(3+4x)−3
Klammer auflösen.
Zusammenfassen.
x∈]−∞;−1712[
x5+3≥x2
x∈]−∞;10]
−3<2(x−2)<5
−3<2x−4<5
Addiere 4.
1<2x<9
Dividiere durch 2.
12<x<92
x∈]12;92[
Löse folgende Ungleichungen
12−3x>x+2,75
Für diese Aufgabe benötigst Du folgendes Grundwissen: Ungleichungen lösen
Wandle den Bruch in eine Dezimalzahl um
Vertausche die linke und rechte Seite
Antwort: x∈]−∞;−0,5625[
58⋅(x−0,4)−2<x−10
Klammer ausmultiplizieren
Antwort: x∈]20,67;∞[
37⋅(2−3x)−1≥12⋅(3x−5)
Klammern ausmultiplizieren
Umwandeln von 1 in einen Scheinbruch
Linke Seite zusammenfassen
Mit dem Hauptnenner 14 multiplizieren.
Löse nach x auf.
Kürzen des Bruches auf der linken Seite.
Antwort: x∈]−∞;1113]
12−5x7≤3
Beim Dividieren durch eine negative Zahl ändert sich die Richtung des Ungleichheitszeichens
Antwort: x∈[−95;∞[
8−3x5≥5−2x
Weil auf der rechten Seite der Ungleichung ein Term steht, muss eine Klammer gesetzt werden
Klammer auflösen
Für die Lösung der Gleichung gilt also: x∈[177;∞[
x−0,35≤7−x2
Weil im Zähler der linken Seite ein Term steht, muss dieser in Klammern gesetzt werden
Weil im Zähler der rechten Seite ein Term steht, muss dieser in Klammern gesetzt werden
Klammern auflösen
Runde den Quotienten auf der rechten Seite auf zwei Nachkommastellen
Für die Lösung der Gleichung gilt also: x∈]−∞;5,09]
35⋅2−x4>0,4⋅(x−1)15
Multipliziere die Brüche der linken Seite
Bruch der linken Seite kürzen
Für die Lösung der Gleichung gilt also: x∈]−∞;1,849[
Bitte melde dich an, um diese Funktion zu benutzen.