🎓 Ui, schon Prüfungszeit? Hier geht's zur Mathe-Prüfungsvorbereitung.
Springe zum Inhalt oder Footer
SerloDie freie Lernplattform

Analysis, Teil B, Aufgabengruppe 1

🎓 Prüfungsbereich für Bayern

Weitere Bundesländer & Aufgaben:
Mathe- Prüfungen Startseite

Austausch & Hilfe:
Prüfungen-Discord

Die Aufgabenstellung findest du hier zum Ausdrucken als PDF.

  1. 1

    Der Graph der in definierten Funktion h:x12x2+2x+4 ist die Parabel Gh. Der Graph der in Aufgabe 1e betrachteten Umkehrfunktion f1 ist ein Teil dieser Parabel.

    1. Berechnen Sie die Koordinaten der Schnittpunkte von Gh mit der durch die Gleichung y=x gegebenen Winkelhalbierenden w des I. und III. Quadranten. (Teilergebnis: x-Koordinaten der Schnittpunkte: 2 und 4) (3BE)

    2. Zeichnen Sie die Parabel Gh - unter Berücksichtigung des Scheitels - im Bereich 2x4 in Ihre Zeichnung aus Aufgabe 1d ein. Spiegelt man diesen Teil von Gh an der Winkelhalbierenden w, so entsteht eine herzförmimge Figur; ergänzen Sie Ihre Zeichnung dementsprechend. (4BE)

  2. 2

    Gegeben ist die Funktion f:x2122x mit maximaler Definitionsmenge Df=];6]. Der Graph von f wird mit Gf bezeichnet.

    1. Berechnen Sie die Koordinaten der Schnittpunkte von Gf mit den Koordinatenachsen. Bestimmen Sie das Verhalten von f für x und geben Sie f(6) an. (5BE)

    2. Bestimmen Sie den Term der Ableitungsfunktion f von f und geben Sie die maximale Definitionsmenge von f an.Bestimmen Sie limx6f(x) und beschreiben Sie, welche Eigenschaften von Gf aus diesem Ergebnis folgt. (zur Kontrolle: f(x)=1122x) (5BE)

    3. Geben Sie das Monotonieverhalten von Gf und die Wertemenge von f an. (2BE)

    4. Geben Sie f(2) an und zeichnen Sie Gf unter Berücksichtigung der bisherigen Ergebnisse in ein Koordinatensystem ein (Platzbedarf im Hinblick auf die folgenden Aufgaben: 3y7). (3BE)

    5. Die Funktion f ist in Df umkehrbar. Geben Sie die Definitionsmenge der Umkehrfunktion f1 von f an und zeigen Sie, dass f1(x)=12x2+2x+4 gilt. (4BE)

  3. 3

    Durch die in Aufgabe 2 entstandene herzförmige Figur soll das abgebildete Blatt modellhaft beschrieben werden. Eine Längeneinheit im Koordinatensystem aus Aufgabe 1d soll dabei 1cm in der Wirklichkeit entsprechen.

    1. Berechnen Sie den Inhalt des von Gh und der Winkelhalbierenden w eingeschlossenen Flächenstücks. Bestimmen Sie unter Verwendung dieses Werts den Flächeninhalt des Blatts auf der Grundlage des Modells. (5BE)

      herzförmiges Blatt
    2. Ermitteln Sie die Gleichung der Tangente an Gh im Punkt (2|(2)). Berechnen Sie den Wert, den das Modell für die Größe des Winkels liefert, den die Blattränder an der Blattspitze einschließen. (6BE)

    3. Der Verlauf des oberen Blattrands wird in der Nähe der Blattspitze durch das bisher verwendete Modell nicht genau genug darstellt. Daher soll der obere Blattrand im Modell für 2x0 nicht mehr durch Gh, sondern durch den Graphen Gk einer in definierten ganzrationalen Funktion k dritten Grades beschrieben werden. Für die Funktion k werden die folgenden Bedingungen gewählt (k und h sind die Ableitungsfunktionen von k bzw. h):

      Ik(0)=h(0)IIk(0)=h(0)IIIk(2)=h(2)IVk(2)=1,5

      Begründen Sie im Sachzusammenhang, dass die Wahl der Bedingungen I,II und III sinnvoll ist. Machen Sie plausibel, dass die Bedingung IV dazu führt, dass die Form des Blatts in der Nähe der Blattspitze im Vergleich zum ursprünglichen Modell genauer dargestellt wird. (3BE)


Dieses Werk steht unter der freien Lizenz
CC BY-SA 4.0Was bedeutet das?