🎓 Ui, schon Prüfungszeit? Hier geht's zur Mathe-Prüfungsvorbereitung.
Springe zum Inhalt oder Footer
SerloDie freie Lernplattform

Aufgaben zu Polynomfunktionen

  1. 1

    Beschreibe den charakteristischen Verlauf der folgenden Funktionen.

    1. f(x)=9x2+7x3

    2. f(x)=2x2+3x6+1

    3. f(x)=(x3)(x+4)(2x)

    4. g(x)=(x1)(x+3)2(x+1)

    5. h(x)=3x(1x2)2(x+7)

    6. f(x)=(x+1)(2x)(1+x2)

    7. i(x)=5xk(x1)k+1

  2. 2

    Ordne die Graphen den richtigen Funktionen zu und gib jeweils eine kurze Begründung an. Zu zwei Funktionen gibt es keinen Graphen.

    Bild
    Bild

    f(x)=0.5x+1

    g(x)=2x2

    h(x)=x2x1

    i(x)=3x6+6x52x2+1

    k(x)=x3x2+2.5

    l(x)=1

    m(x)=x5+2x2

    n(x)=x6+x4

  3. 3

    Welcher Funktionsterm gehört zum Graph?

    1. Polynomfunktion
    2. Bild
    3. Bild
  4. 4

    Untersuche den Graphen Gf der Funktion f mit f(x)=3x42x2+5 soweit, sodass du ihn zeichnen kannst.

  5. 5

    Skizziere den Graphen Gf der Funktion f mit f(x)=3x4+2x2+5 nur durch Überlegung und ohne Wertetabelle.

  6. 6

    Bestimme bei folgenden Funktionen den Definitionsbereich, die Nullstellen, das Symmetrieverhalten, die Grenzwerte und die Wertemenge.

    1. f(x)=x42x2+3

    2. g(x)=x2+2x+1

    3. h(x)=x3+4x

    4. i(x)=x34x23x+18


Dieses Werk steht unter der freien Lizenz
CC BY-SA 4.0Was bedeutet das?