Springe zum Inhalt oder Footer
SerloDie freie Lernplattform

18Hessesche Normalenform

Variante 1

Die Ebene ist in Koordinatenform gegeben.

Um die hessesche Normalenform dieser Ebene zu berechnen, teilt man die Ebenengleichung durch den Betrag des Normalenvektors.

Ebenengleichung in Koordinatenform:

Normalenvektor dieser Ebene: n=(abc)\vec{n} = \begin{pmatrix} a \\ b \\ c \end{pmatrix}

Betrag des Normalenvektors: n=a2+b2+c2|\vec{n}| = \sqrt{a^2 + b^2 + c^2}

Dann ist die hessesche Normalenform:

(Der Kreis \circ bezeichnet hier das Skalarprodukt.)

und man erhält ausmultipliziert:

Beispiel Variante 1

Die Ebenengleichung in Koordinatenform der Ebene EE ist:

Der Normalenvektor der Ebene ist n=(326)\vec{n} = \begin{pmatrix} 3 \\ -2 \\ 6 \end{pmatrix}

Berechne den Betrag des Normalenvektors:

n\displaystyle |\vec{n}|==32+(2)2+62\displaystyle \sqrt{3^2+(-2)^2+6^2}

Berechne die Quadrate.

==9+4+36\displaystyle \sqrt{9+4+36}

Fasse zusammen.

==49\displaystyle \sqrt{49}

Ziehe die Wurzel.

==7\displaystyle 7

Der Betrag des Normalenvektors ist 77.

EHNF:  ax1+bx2+cx3dn\displaystyle E_{HNF}:\;\dfrac{ax_1+bx_2+cx_3-d}{|\vec{n}|}==0\displaystyle 0

Setze die Ebene E:3x12x2+6x3=14E:3x_1-2x_2+6x_3=14 und n=7 |\vec{n}|=7 ein.

3x12x2+6x3147\displaystyle \dfrac{3x_1-2x_2+6x_3-14}{7}==0\displaystyle 0

Nach dem Distributivgesetz kann man aber auch jeden Summanden durch 7 teilen.

37x127x2+67x3147\displaystyle \dfrac{3}{7}x_1-\dfrac{2}{7}x_2+\dfrac{6}{7}x_3-\dfrac{14}{7}==0\displaystyle 0

Kürze.

37x127x2+67x32\displaystyle \dfrac{3}{7}x_1-\dfrac{2}{7}x_2+\dfrac{6}{7}x_3-2==0\displaystyle 0

Die hessesche Normalform der Ebene lautet:

oder

Variante 2

Die Ebene ist in Parameterform gegeben.

Um die hessesche Normalform dieser Ebene zu ermitteln, berechnet man den Normalenvektor n\vec n über das Kreuzprodukt der Richtungsvektoren und setzt ihn dann in die Gleichung ein:

Dabei ist (a1a2a3)\begin{pmatrix}a_1\\a_2\\a_3\end{pmatrix}der Ortsvektor eines (beliebigen) Punktes in der Ebene.

Beispiel Variante 2

Die Ebenengleichung in Parameterform der Ebene EE ist:

E:X=(123)+r(321)+s(222)E:\overrightarrow{X}=\begin{pmatrix} 1 \\ 2 \\ 3\end{pmatrix}+r\cdot \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}+s \cdot\begin{pmatrix} 2 \\ 2 \\ 2 \end{pmatrix}

Berechne das Kreuzprodukt der Richtungsvektoren:

n=(321)×(222)=(242)\vec n=\begin{pmatrix}3\\2\\1\end{pmatrix}\times\begin{pmatrix}2\\2\\2\end{pmatrix}=\begin{pmatrix}2\\-4\\2\end{pmatrix}

Berechne den Betrag des Normalenvektors:

n\displaystyle |\vec{n}|==22+(4)2+22\displaystyle \sqrt{2^2+(-4)^2+2^2}

Berechne die Quadrate.

==4+16+4\displaystyle \sqrt{4+16+4}

Fasse zusammen.

==24\displaystyle \sqrt{24}

Der Betrag des Normalenvektors ist 24\sqrt{24}.

Setze in die Gleichung ein:

EHNF:  nn[(x1x2x3)(a1a2a3)]\displaystyle E_{HNF}:\;\dfrac {\vec n}{\left|\vec n\right|}\circ\left[\begin{pmatrix}x_1\\x_2\\x_3\end{pmatrix}-\begin{pmatrix}a_1\\a_2\\a_3\end{pmatrix}\right]==0\displaystyle 0

Setze den Aufpunkt (123) (1|2|3), n=(242)\vec n=\begin{pmatrix}2\\-4\\2\end{pmatrix} und n=24 |\vec{n}|=\sqrt{24} ein.

124(242)[(x1x2x3)(123)]\displaystyle \dfrac{1}{\sqrt{24}}\begin{pmatrix}2\\-4\\2\end{pmatrix}\circ\left[\begin{pmatrix}x_1\\x_2\\x_3\end{pmatrix}-\begin{pmatrix}1\\2\\3\end{pmatrix}\right]==0\displaystyle 0

Die hessesche Normalform der Ebene lautet:

oder ausmultipliziert:

Hinweis: Auf der rechten Seite steht als Skalarprodukt des Normalenvektors und des Aufpunkts eine Null. Das bedeutet, dass die Ebene durch den Ursprung geht.